
Introduction to TensorFlow

http://tensorflow.org/whitepaper2015.pdf

http://tensorflow.org/whitepaper2015.pdf

OSDI 2016

Outline

● What is TensorFlow?

● Why did we create TensorFlow?

● How does TensorFlow work?

● Parallelisms: Data and Model

● Fault Tolerance

● Wrapping up

- Architecture in comparison with Mapreduce

● Fast, flexible, and scalable

open-source machine learning

library

● One system for research and

production

● Runs on CPU,GPU,TPU, and

Mobile

● Apache 2.0 license

Machine learning gets complex quickly

Modeling complexity

2015Google's inception Network

Machine learning gets complex quickly

Heterogenous

System
Distributed

System

TensorFlow Handles Complexity

Modeling complexity Heterogenous

System
Distributed

System

Under the Hood

A multidimensional array.

A graph of operations.

The TensorFlow Graph

Computation is defined as a graph

● Graph is defined in high-level language (Python)

● Graph is compiled and optimized

● Graph is executed (in parts or fully) on available low

level devices (CPU, GPU,TPU)

● Nodes represent computations and state

● Data (tensors) flow along edges

Stochastic Gradient Descent (SGD)

Build a graph; then run it.

...
c = tf.add(a, b)

...

session = tf.Session()
value_of_c = session.run(c, {a=1, b=2})

add

a b

c

Any Computation is a TensorFlow Graph

MatMul

Add Relu

biases

weights

examples

labels

Xent

A single neural network layer; a primitive linear classifier

Any Computation is a TensorFlow Graph

MatMul

Add Relu

biases

weights

examples

labels

Xent

variables

Automatic Differentiation

Xent

biases

... grad

Automatically add ops which

compute gradients for variables

Any Computation is a TensorFlow Graph

Simple gradient descent:

Xent Mul

biases

...

learning rate

−=grad

Any Computation is a TensorFlow Graph

Device BDevice A

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

...

Send and Receive Nodes

Device BDevice A

Add Mul

biases

learning rate

−=...

...

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

Send and Receive Nodes

Device A Device B

Add Mul

biases

learning rate

−=...

Send

Recv

Send Recv

Send Recv

... RecvSend

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

From perspective of Linear
Regression

Linear Regression

y = Wx + b

input

parameters

result

What are we trying to do?

Mystery equation:y = 0.1 * x + 0.3 + noise

Model:y = W * x + b

Objective:Given enough (x,y) value samples, figure out

the value of W and b.

y =Wx + b inTensorFlow

import tensorflow as tf

y = W x+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

y = Wx+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

W = tf.get_variable(shape=[], name=”W”)

y = Wx+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

W = tf.get_variable(shape=[], name=”W”)

b = tf.get_variable(shape=[], name=”b”)

y = Wx+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

W = tf.get_variable(shape=[], name=”W”)

b = tf.get_variable(shape=[], name=”b”)

y = W * x + b

+

matmul

W

b

x

y

init_op = tf.initialize_all_variables()

Variables Must be Initialized
Collects all variable initializers

Makes an execution environment

Actually initialize the variables

+

matmul

W

b

x

init_op

assign

assign

initializer

initializer

sess = tf.Session()

sess.run(init_op)

y

feed

fetch

Running the Computation

+

matmul

W

b

x

y
x_in = 3

sess.run(y, feed_dict={x: x_in})

● Only what’s used to compute a fetch will

be evaluated

● AllTensors can be fed, but all

placeholders must be fed

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32,

name='x')

W = tf.get_variable(shape=[], name='W')

b = tf.get_variable(shape=[], name='b')

y = W * x + b

with tf.Session() as sess:

sess.run(tf.initialize_all_variables())

print(sess.run(y, feed_dict={x: x_in}))

Putting it all together

Build the graph

Prepare execution environment

Initialize variables

Run the computation (usually often)

Define a Loss

Given x, y compute a loss, for instance:

create an operation that calculates loss.
loss = tf.reduce_mean(tf.square(y - y_data))

Minimize loss: optimizers

tf.train.AdadeltaOptimizer

tf.train.AdagradOptimizer

tf.train.AdagradDAOptimizer

tf.train.AdamOptimizer

…

error

function minimum

parameters (weights, biases)

Train
Feed (x, y

label
) pairs and adjust Wand b to decrease the loss.

W ←W - 1 (dL/dW)

Create an optimizer

optimizer = tf.train.GradientDescentOptimizer(0.5)

Create an operation that minimizes loss.

train = optimizer.minimize(loss)

b ← b - 1 (dL/db) TensorFlow computes
gradients automatically

Learning rate

loss = tf.reduce_mean(tf.square(y - y_label))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

with tf.Session() as sess:

sess.run(tf.initialize_all_variables())

for i in range(1000):

sess.run(train, feed_dict={x: x_in[i],

y_label: y_in[i]})

Putting it all together
Define a loss

Create an optimizer

Op to minimize the

loss

Iteratively run the

training op

Initialize variables

TensorBoard

Parallelism

Data Parallelism
Parameter Servers

...

...Data

Model

Replicas

Data Parallelism

Parameter Servers

...

...Data

Model

Replicas

p’

p’ = p + ∆p

Data Parallelism

Parameter Servers

...
Model

Replicas

p’∆p’

...Data

p’’ = p’ + ∆p

Data Parallelism

Parameter Servers

...
Model

Replicas

p’∆p’

p’’ = p’ + ∆p

...Data

Model Parallelism

Fault Tolerance

• Assumptions:
• Fine grain operations: “It is unlikely that tasks will fail so often that individual

operations need fault tolerance”

• “Many learning algorithms do not require strong consistency”

• Solution: user-level checkpointing (provides 2 ops)
• save(): writes one or more tensors to a checkpoint file

• restore(): reads one or more tensors from a checkpoint file

Distributed training mechanisms

Graph structure and low-level graph primitives (queues) allow us to play with

synchronous vs. asynchronous update algorithms.

Architecture from
perspective of MapReduce

Detailed architecture

From: https://www.tensorflow.org/extend/architecture

46

Thank you!

Thank you!
Questions?

Reference Slides

https://learning.acm.org/binaries/content/assets/leaning-
center/webinar-
slides/2016/martinwicke_tensorflow_webinarslides.pdf

https://www.matroid.com/scaledml/slides/jeff.pdf

https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2016/martinwicke_tensorflow_webinarslides.pdf
https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2016/martinwicke_tensorflow_webinarslides.pdf
https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2016/martinwicke_tensorflow_webinarslides.pdf
https://www.matroid.com/scaledml/slides/jeff.pdf

	Slide 1: Introduction to TensorFlow
	Slide 2
	Slide 3
	Slide 4: Outline
	Slide 5
	Slide 6: Machine learning gets complex quickly
	Slide 7: Machine learning gets complex quickly
	Slide 8: TensorFlow Handles Complexity
	Slide 9: Under the Hood
	Slide 10
	Slide 11: The TensorFlow Graph
	Slide 12: Build a graph; then run it.
	Slide 13: Any Computation is a TensorFlow Graph
	Slide 14: Any Computation is a TensorFlow Graph
	Slide 15: Automatic Differentiation
	Slide 16: Any Computation is a TensorFlow Graph
	Slide 17: Any Computation is a TensorFlow Graph
	Slide 18: Send and Receive Nodes
	Slide 19: Send and Receive Nodes
	Slide 20: From perspective of Linear Regression
	Slide 21: Linear Regression
	Slide 22: What are we trying to do?
	Slide 23
	Slide 24: y = W x + b in TensorFlow
	Slide 25: y = Wx + b in TensorFlow
	Slide 26: y = Wx + b in TensorFlow
	Slide 27: y = Wx + b in TensorFlow
	Slide 28: Variables Must be Initialized
	Slide 29: Running the Computation
	Slide 30: Putting it all together
	Slide 31: Define a Loss
	Slide 32: Minimize loss: optimizers
	Slide 33: Train
	Slide 34: Putting it all together
	Slide 35: TensorBoard
	Slide 36: Parallelism
	Slide 37: Data Parallelism
	Slide 38: Data Parallelism
	Slide 39: Data Parallelism
	Slide 40: Data Parallelism
	Slide 41: Model Parallelism
	Slide 42: Fault Tolerance
	Slide 43: Distributed training mechanisms
	Slide 44: Architecture from perspective of MapReduce
	Slide 45: Detailed architecture
	Slide 46
	Slide 47: Reference Slides

