
• PaaS Techniques
• Programming Model

Cloud Computing

Agenda

• Overview

 Hadoop & Google

• PaaS Techniques

 File System
• GFS, HDFS

 Programming Model
• MapReduce, Pregel

 Storage System for Structured Data
• Bigtable, Hbase

MapReduce

How to process large data sets and easily
utilize the resources of a large distributed
system …

MAPREDUCE

Introduction

Programming Model

Implementation

Refinement

Hadoop MapReduce

How much data?

• Facebook internally distributes 800PB of "hot data"
daily (2022)

• Wayback Machine 70PB (December 2020)

• How about the future…

640K ought to be
enough for anybody.

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Pregel

A system for large-scale graph processing

Introduction

• The Internet made the Web graph a poplar object of
analysis and research.

• In Google, MapReduce is used for 80% of all the data
processing needs.

• The other 20% is handled by a lesser known
infrastructure called Pregel which is optimized to
mine relationships from graphs.

Introduction(cont.)

• Graph is a collection of vertices or nodes and a
collection of edges that connect pair of nodes.

• A graph is a collection of points and lines connecting
some (possibly empty) subset of them.

- wikipedia

- mathworld

Introduction(cont.)

• Graph does not just mean the image, most of the
time in Internet, graph means the relations between
nodes.

MODEL

Model

Implement

Communication

Model

• The high-level organization of Pregel programs is
inspired by Valiant’s Bulk Synchronous Parallel (BSP)
model.

• The synchronicity of this model makes it easier to
reason about program semantics when
implementing algorithms.

• Pregel programs are inherently free of deadlocks and
data races common in asynchronous systems.

BSP Model

• A BSP computation proceeds in a series of global
supersteps.

1. Local computation

2. Global communication

3. Barrier synchronization

1. Run algorithm on each machine

2. Communicate with each other

3. Wait

Pregel Model

• The Pregel library divides a graph into partitions,
each consisting of a set of vertices and all of those
vertices’ outgoing edges.

• There are three components in Pregel

 Master

 Worker

 Aggregator

Master

Worker Worker Worker Worker

Aggregator

Pregel Model

• Master
 Assign jobs to workers.

 Receive result from workers.

• Worker
 Execute jobs from master.

 Deliver result to master.

• Aggregator
 A global container that can receive messages from workers.

 Automatic computation on all the messages according to
the user-defined function.

Partition

• In Pregel model, each
graph is a directed
graph, in which each
vertex has a unique id
and each edge has a
value.

• Graph can be divided
into partitions
 A set of vertices

 All of these vertices’
outgoing edges Partition

Partition(cont.)

• Pregel provides a default assignment where partition
function is hash(nodeID) mod N, where N is the
number of partitions, but user can overwrite this
assignment algorithm.

• In general, it is a good idea to put close-neighbor
nodes into the same partition so that message
between these nodes can reduce overhead.

Worker Model

• There are two status types for each vertex

 Active

 Inactive

• The algorithm as a whole terminates when all
vertices are simultaneously inactive and there are no
messages in transit.

• Every vertex is in the active state in superstep 0.

Active Inactive

Vote to halt

Message received

Worker Model

Initial

Computation

Communication

Barrier

Receive
message

Worker

MODEL

Model

Implement

Communication

Master

• The master is primarily responsible for coordinating
the activities of workers.

• Master sends the same request to every worker that
was known to be alive at beginning, and waits for a
response from every worker.

• If any worker fails, the master enters recovery mode.

Master

Master

worker worker worker

Alive ?

Yes Yes Yes

Job Job Job

I’m waiting

Result 0 Result 1 Result 2

Worker

• A worker machine maintains the state of its portion of
the graph in memory.

• Worker performs a superstep that loops through all
vertices and calls Compute().

 During a superstep the framework invokes a user-defined
function for each vertex, conceptually in parallel. The
function specifies behavior at a single vertex V and a single
superstep S: receive, compute, send out

• Worker has no access to incoming edges because each
incoming edge is part of a list owned by the source vertex.

Worker

Call Compute()

Incoming
Iterator

Outgoing
Iterator

1. An incoming iterator to the
incoming message.

2. Run algorithm by calling
Compute()

3. An outgoing iterator to
send message

Aggregators

• An aggregator computes a single global value by
applying an aggregation function to a set of values
that the user supplies.

• Worker combines all of the values supplied to an
aggregator instance when executes a superstep.

• An aggregator is partially reduced over all of the
worker’s vertices in the partition.

• At the end of superstep workers form a tree to
reduce partially reduced aggregator into global
values and deliver them to the master.

Failure Recover

• Worker failure are detected using regular ‘ping’
messages that master issues to workers.

• If a worker does not receive a ping message after a
special interval, the worker process terminates.

• If the master does not hear back from a worker, the
master marks the worker process as failed.

Failure Recover (cont.)

• If one or more workers fail, the master reassigns
graph partitions, these workers performed, to the
currently available set of workers.

• Workers reload their partition state from the most
recent available checkpoint at the beginning of a
superstep.

MODEL

Model

Implement

Communication

• Vertices communicate directly with one another by
sending message.

• In Pregel, there are many virtual functions that can
be overridden by programmer.

 Compute

 Combiners

 Aggregators

Communication

Algorithm

Communication for some purpose

Communication

• A vertex can send any number of messages in a
superstep.

• All messages sent to vertex V in superstep S are
available, via an iterator, but not guaranteed order of
messages in the iterator.

• Vertex V sent message to destination vertex, which
may not be a neighbor of V.

• A vertex could learn the identifier of a non-neighbor
from a message received earlier, or could be known
implicitly.

• When destination vertex does not exist, pregel
executes user-defined handles, like create the
missing vertex or remove the dangling edge.

Communication(cont.)

messagemessage

?

Execute exception handle
1. Add vertex
2. Remove edge

Combiners

• Combiners can combine several messages into a
single message.

• Combiners are not enabled by a default, because
there is no mechanical way to find a useful
combining function that is consistent.

• Combiners do not guarantee about which messages
are combined, the groupings presented to the
combiner, or the order of combining.

 Combiner should only be enabled for commutative and
associative operator.

Aggregators

• Pregel aggregators are a mechanism for global
communication, monitoring, and data.

• Each vertex can provide a value to an aggregator in
superstep S, the system combines those values using
a reduction operator, and the resulting value is make
available to all vertices in superstep S+1.

 Minimum

 Summary

 …etc

Communication(cont.)

• Sending a message, especially to a vertex on another
machine, incurs some overhead.

Aggregator

Combiner

…

Result
…

SAMPLE CASE

Shortest Paths –

The shortest path problem is the best well-know problem in graph theory

• Phase 0

 Assume the value associated with each vertex is initialized
to INF (a constant larger than any distance in the graph).

 Only the source vertex updates its value (from INT to 0).

Shortest Paths

0

F

F

F

F

F

F F

F

F

Shortest Paths

• Phase 1

 For each updated vertex, send its value to neighbors.

 For each vertex which received one or more messages,
update its value to the minimal value in these messages
and its value.

0

F

F

F

F

F

F F

F

F
1

1

2

2

2

3

3

4

4

Shortest Paths

• Phase 2

 The algorithm is terminated when no more updates occur.

0

F

F

F

F

F

F F

F

F
1

1

2

2

2

3

3

4

4

Summary of Pregel

• Pregel is a model suitable for large-scale graph computing
 Quality

 Scalability

 Fault tolerance

• User switches to the ‘think like a vertex’ mode of
programming
 Designed for sparse graphs where communication occurs mainly over

edges.

 Its performance will suffer when most vertices continuously send
messages to most other vertices. Realistic dense graphs are rare.

• Some graph algorithm can be transformed into more Pregel-
friendly variants.

Summary

• Scalability

 Provide the capability of processing very large amounts of data.

• Availability

 Provide the ability of failure tolerance on machine failure.

• Manageability

 Provide mechanism for the system to automatically monitor
itself and manage the complex job transparently for users.

• Performance

 Good enough than extra passes over the data.

References

• Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplied Data
Processing on Large Clusters, ” OSDI 2004 .

• Grzegorz Malewicz , Matthew H. Austern , Aart J.C. Bik , James C.
Dehnert , Ilan Horn , Naty Leiser , Grzegorz Czajkowski. “Pregel:
a system for large-scale graph processing,” Proceedings of the
28th ACM symposium on Principles of distributed computing,
(August 10-12, 2009)

• Hadoop.
 http://hadoop.apache.org/

• NCHC Cloud Computing Research Group.
 http://trac.nchc.org.tw/cloud

• Jimmy Lin’s course website.
 http://www.umiacs.umd.edu/~jimmylin/

http://hadoop.apache.org/
http://trac.nchc.org.tw/cloud
http://www.umiacs.umd.edu/~jimmylin/

• https://www.youtube.com/watch?v=X8z_MOU5N
00

• 9 12 12 PageRank in MapReduce and Pregel 10 42

• From 4:10

https://www.youtube.com/watch?v=X8z_MOU5N00

