
In-Class Quiz: Advanced Text Generation Application

Introduction

The Advanced Text Generation Application is an innovative tool that utilizes the Hugging
Face transformers library to generate coherent text based on user-input prompts. This
enhanced version includes features for Sentiment Analysis, Batch Processing, and an
Interactive Mode, allowing users to engage with the application dynamically and
efficiently.

Note:
The quiz is worth a total of 8 points. You will receive full credit if you complete and
submit it by 11:59 PM on April 21. Additionally, if you finish and submit it by 3:50 PM on
April 21, you will receive 3 extra credit points. We will upload a sample solution to the
same directory on Canvas at 3:55 PM on April 21, which you can refer to.

Objectives

This project provides an engaging opportunity for students to learn about the concepts

of large language models (LLMs) operating on a cloud machine, with a specific focus on

text generation. By completing the required tasks, you will gain practical experience with

modern cloud LLM tools and will be able to write your own code to enable the following

functions of text generation:

1. Sentiment Analysis:

• Assess the emotional tone of the generated text, categorizing it as positive,
negative, or neutral.

2. Batch Processing:

• Allow users to input multiple prompts simultaneously, generating results
efficiently for each prompt in a single operation.

3. Interactive Mode:

• Enable continuous user interaction, allowing multiple prompts to be processed
during a single session without restarting the application.

4. Save Results to File:

• Store the generated text and sentiment analysis results in a text file for easy
reference.

5. User-Defined Parameters:

• Allow users to specify temperature, maximum length, and number of paragraphs
for text generation.

The program you created will have the following key features:

• Coherent Text Generation: Leverage the GPT-2 model to produce human-like text
based on user inputs.

• Emotional Insights: Offer sentiment evaluations alongside generated content for
understanding tone.

• Efficiency in Processing: Support batch processing to handle multiple prompts in
one go.

• Interactive Experience: Allow users to generate text interactively without restarting
the application.

• Results Documentation: Save all generated outputs and analyses in a structured
format.

Example Code

Below is the foundational code for the Advanced Text Generation Application. It includes
necessary setups for text generation and outlines the framework for implementing
sentiment analysis, batch processing, and interactive mode functionalities.

File: advanced_text_generation.py

You can download the file from the same folder of this introduction.

from transformers import pipeline

Load the text generation pipeline using GPT-2

generator = pipeline('text-generation', model='gpt2', device=-1) # Use CPU

Load the sentiment analysis model

TO DO ###

Hint: You can refer to the instructions in the introduction file for more

information about the function to use, as well as its input and output.

def generate_text(prompts, max_length=100, temperature=0.7,

num_return_sequences=1):

"""Generate text using the GPT-2 model based on a list of prompts."""

TO DO ###

Hint: You can use a for loop to generate each prompt or set the input

directly as a list of prompts.

Hint: To retrieve the output, you may use `result['generated_text']`. You

can also refer to the code from the last LLM Quiz for guidance on the output

format.

def save_to_file(results, filename='generated_results.txt'):

 """Save generated text and sentiment results to a file."""

 with open(filename, 'w', encoding='utf-8') as file:

 for result in results:

 file.write(f"Prompt: {result['prompt']}\n")

 file.write(f"Generated Text: {result['generated_text']}\n")

 file.write(f"Sentiment: {result['sentiment']['label']} (Score:

{result['sentiment']['score']:.2f})\n")

 file.write("-" * 40 + "\n")

 print(f"Results saved to {filename}")

def main():

 print("Welcome to the Advanced Text Generation Application!")

 # Get user-defined parameters

 max_length = int(input("Enter the maximum length of generated text

(recommended 30-100): "))

 temperature = float(input("Enter temperature (recommended range 0.5-1.0): "))

 num_paragraphs = int(input("Enter the number of paragraphs to generate for

each prompt: "))

 results_to_save = []

 # Interactive Mode: Allow users to input multiple prompts

 ### TO DO ###

Hint: You can use a while loop to keep generating text based on the input

prompts until you enter 'exit' or 'quit' to terminate the interactive mode.

 user_input = input("Enter your prompts separated by commas (or type

'exit' or 'quit' to quit): ")

 # Clean the generated text for current batch

 results = []

 # Split the input into a list of prompts (separated by commas)

 prompts = [prompt.strip() for prompt in user_input.split(',')]

 # Generate text for a batch of prompts

 generated_texts = generate_text(prompts, max_length, temperature,

num_paragraphs)

 # Analyze sentiment for each generated text and store results

 ### TO DO ###

 # Hint: You can call the loaded sentiment analysis model you created

before and refer to "Display Results Clearly" below for more information on the

format of the results.

 # Display results clearly

 for result in results:

 print(f"Prompt: {result['prompt']}")

 print(f"Generated Text: {result['generated_text']}")

 print(f"Sentiment: {result['sentiment']['label']} (Score:

{result['sentiment']['score']:.2f})")

 print("-" * 40)

 # Save results to a file after each batch

 results_to_save.extend(results)

 save_to_file(results_to_save)

if __name__ == "__main__":

 main()

Instructions for Students
In the end of this file you will see an example output of this program, which helps you
better understand the instruction and write the code.

1. Implement Sentiment Analysis:

• Use the Hugging Face sentiment analysis pipeline as follows:

sentiment_analyzer = pipeline('sentiment-analysis')

• Input Format:
1. The input can be a single string or a list of strings representing the text(s)

you want to analyze.
2. For example:

text = "I love this product!" # Single input

texts = ["I love this product!", "This is the worst experience I've ever had."] # Batch

input

• Output Format:
1. The output will be a list of dictionaries, with each dictionary containing:

1) label: Indicates the predicted sentiment (e.g., "POSITIVE",

"NEGATIVE").
2) score: A float representing the confidence level of the sentiment

prediction (which ranges from 0 to 1).
2. Example output for a single input:

output = sentiment_analyzer(text)

Output: [{'label': 'POSITIVE', 'score': 0.99}]

3. Example output for batch input:

output = sentiment_analyzer(texts)

Output: [{'label': 'POSITIVE', 'score': 0.99}, {'label': 'NEGATIVE', 'score': 0.85}]

2. Implement Batch Processing:

• Write your own code to generate text for each prompt in
the generate_text function.

• Hint: You can use a for loop to generate each prompt or set the input directly as a
list of prompts.

• Hint: To retrieve the output, you may use `result['generated_text']`. You can also
refer to the code from the last LLM Quiz for guidance on the output format.

3. Create Interactive Mode:

• Implement a continuous loop in the main function that allows users to input

prompts repeatedly.

• Check for commands like "exit" or "quit" to allow graceful termination.

• Hint: You can use a while loop to keep generating text based on the input
prompts until you enter 'exit' or 'quit' to terminate the interactive mode.

• For each valid prompt, generate the corresponding text using
the generate_text function and analyze its sentiment.

• Finally, you need to store the result in the result list.

• Hint: You can call the loaded sentiment analysis model you created before
and refer to "Display Results Clearly" in the code for more information on the
format of the results.

Feel free to explore and customize the application further based on your interests. If you
have any questions during your implementation, don’t hesitate to ask!

We will upload a sample solution to the same folder on Canvas at 3:55 PM on April
21.

Submission
Please save your output to a file and upload it along with your code to the quiz.

Example outputs of the code after completing all TODOs:

Welcome to the Advanced Text Generation Application!

Enter the maximum length of generated text (recommended 30-100): 30

Enter temperature (recommended range 0.5-1.0): 0.5

Enter the number of paragraphs to generate for each prompt: 2

Enter your prompts separated by commas (or type 'exit' or 'quit' to quit): Monday is,
Tuesday is

……

Prompt: Monday is

Generated Text: Monday is the first day of the new year.

In the past, the company has been known to offer free shipping and to charge customers
for

Sentiment: POSITIVE (Score: 0.60)

--

Prompt: Monday is

Generated Text: Monday is a good time to look at the past.

As a former NFL player, I'm not a fan of the current NFL. I

Sentiment: POSITIVE (Score: 1.00)

--

Prompt: Tuesday is

Generated Text: Tuesday is the day that the final round of the playoffs begins, and the final
round of the playoffs ends.

If you want to know more

Sentiment: POSITIVE (Score: 0.72)

--

Prompt: Tuesday is

Generated Text: Tuesday is the first day of the NFL Draft, and while it's not the first time the
draft has been held during the offseason, it will be

Sentiment: POSITIVE (Score: 1.00)

--

Results saved to generated_results.txt

Enter your prompts separated by commas (or type 'exit' or 'quit' to quit): Wednesday is,
Thursday is

……

Prompt: Wednesday is

Generated Text: Wednesday is the deadline for the first of six teams to sign a one-year, $5
million deal with the Eagles. The Eagles will have to

Sentiment: NEGATIVE (Score: 0.98)

--

Prompt: Wednesday is

Generated Text: Wednesday is the 10th anniversary of the launch of the first Galaxy S4
smartphone.

The first Galaxy S4 was released in April 2013.

Sentiment: POSITIVE (Score: 0.99)

--

Prompt: Thursday is

Generated Text: Thursday is the last day of the season.

The Packers have won three straight games and are looking to extend their winning streak
to five games.

Sentiment: POSITIVE (Score: 0.99)

--

Prompt: Thursday is

Generated Text: Thursday is the first time that a major-league team will play in the
American League East. The Astros will play the Dodgers in the American League East

Sentiment: POSITIVE (Score: 1.00)

--

Results saved to generated_results.txt

Enter your prompts separated by commas (or type 'exit' or 'quit' to quit): exit

Exiting the application. Goodbye!

