PA3 Tutorial

CS 4740 Cloud Computing

Department of Computer Science, University of Virginia, USA

e Viedo for computer program:

http://www.youtube.com/watch?v=bUB1RIpbFNs&mode=related&sear
ch=

Goal of this PA

« Gain hands-on experience with the MapReduce framework

« Understand the input and output of each phase
» <key, value> pair

Python mrjob -- First Job in the Tutorial in “Fundamentals™

» A‘“step” consists of a mapper, a S—
combiner (shuﬁle%, and a reducer. All of E/fsju'gefd- 'mpﬁrtl_cb'ass
those are optional, though you must ob from the library
have at least one. from mrjob.job import MRIob

Map input Required: Inherit
» a key and a value (in this case, the key is I] -
ignored and a singﬁe line of text input is the ©1ass MRWordFrequencyCount(MR1ob):

value Each line
def mapper(self, , line):

’ Map SUtprt h i f yield "chars", len(line)
* ﬁl ebe orfeahc mteo text b ¢ q yield "words", len{line.split())
* Number of characters, number of words, ield "lines" . 1 .
and number of lines yield “Anes An iterator of
_ key value “wvalues
 Reduce Input def reducer(self, key, wvalues):
* a key and an iterator of values yield key, sum(values)
* Why an iterator of values? Because all the Defined by yourself
values of the same key are passed to the _
same reducer. if pame o= ' main . Required
* Reduce output MRWordFrequencyCount. run()

* Sum the values for each key

» Total number of characters, total number of
words, total number of lines in the text

Running the Job

The most basic way to run your job 15 on the command line;
$ python my job.py input.txt
By default, output will be written to stdout.

If you like to save output to a file, then add “> file name”

The second |job in the Tutorial in
“Fundamentals”

» Most of the time, you’ll need more than one step in your job. To
define multiple steps, override steps() to return a list of
MRSteps.

def steps(self):
return |
MRStep({mapper=self.mapper_get words,
combiner=self.combiner_ count_words,
reducer=self.reducer_count_words},
MRStep{reducer=self.reducer_find max_word)

]

from mrjob.job import MRIob
from mrjob.step import MRStep
import re

WORD_RE = re.compile(r"[‘w']+")

The second job

class MRMostUsedWord(MRIcb):

def steps(self):
return [

MRStep({mapper=self.mapper_get words,
combiner=self.combiner_count_wocrds,
reducer=self.reducer_count_words}),

MRStep(reducer=self.reducer_find_max_word)

]
Read this program! def mapper_get_words(self, _, line):

yield each word in the Lline
for word in WORD_RE.findall(line):
yield (word.lower(), 1)

def combiner_count_words(self, word, counts}):
optimization: sum the words we've seen so far
yield (word, sum(counts))

Find the word with
def reducer count words(self, word, counts):
1 # send all (num_occurrences, word) pairs to the same reducer.
the hlghESt # num_occurrences is so we can easily wuse Python's max() function.

yield Mone, (sum{counts), word)
occurrences.

discard the key; it is just None

def reducer_find max_word(self, _, word_count_pairs):
each item of word count_pairs is (count, word),
so yielding one results in key=counts, value-word
yield max({word_count_pairs)

if _name__ == '__main__":
MRMostUsedWord. run()

" from mrjob.job import MRIcb
from mrjob.step import MRStep
import re

WORD_RE

= re.compile(r"[hw']+")

class MRMostUsedWord({MRIcb):

def

def

detf

def

steps(self):
return [

MRStep(mapper=self.mapper_get words,
combiner=self.combiner_count_words,
reducer=self.reducer_count_words),

MRStep(reducer=self.reducer_find_max_word)

]

mapper_get words(self, _, line):

yield each word in the Line

for word in WORD_RE.findall(line):
yield {(word.lower(), 1)

combiner_count_words(self, word, counts):
optimization: sum the words we've seen so far
yield (word, sum{counts))

reducer count words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.

num_occurrences is so we can easily use Python's max() function.

yield Mone, (sum{counts), word)

discard the key; it is just None

detf

if __name__ ==

reducer_find max_word(self, _, word_count_pairs):

each item of word_count_pairs is (count, word),

so yielding one results in key=counts, value=word
yield max(word_count_pairs)

' _main__":

MRMostUsedwWord. rund)

—

Remove punctuation

Define multiple steps

Count each word in one line

Occurrences of each word

Output just one key “ ", value is a tuple of
(count, word)
So that you can use the max() easily

Output the word that has the highest occurrences

° Iine_split = Iine.split(',') # sep_length, sep_width, pet_length, pet_width, classification

. classification = line_split[-1] # last element
. sep_length = line_split[0] # first element

e vield classfication, float(sep_width)

e vield key, float(sum(sep_width)) / len(sep_width)

W N N RN R W R W N O W Y VR S S N S S R ST, T S S S

oD PREHESNHE PR OWoOm RO RSN EOND -
1 U U L L U a0 1 L P 0 1 0 U N U U L
PO R WO ERENOEOOOR IR OAROOHNDY
T e e e e e e e e
O OVD I D~ 1~ B LA R Y i B e s i B R
[oYet=totototolotototolotoYolotolol=tFot=t=T=Y T =TT
B 1 TN U7 T T L L e B N 1 4 P N R R P N P R

,lris-setosa
. Iris-setosa
. Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
Iris-setosa
., Iris-setosa
,Iris-setosa
Iris-setosa
., Iris-setosa
,Iris-setosa
Iris-setosa
,Iris-setosa
,Iris-setosa

yield key, float(sum(sep_width)) / len(sep_width)

e This equation does not work for some computers. "float division by zero”
ZeroDivisionError will be shown.

Because the value input of reducer is a generator. Generator in python can be
only used once. After sum(sep_width), the generator becomes empty,
so len(sep_width)=0.

e You can use a "for" loop to calculate the average -- "foriin sep_width".

3) if key =="Iris Setosa':

One tip for Step 4 of PA3 ...

* The output of reducer is sorted by key.

» Use this feature to sort the occurrences of words.

Step 4

e Original order:

* What we want:

e def map_sort(self, word, count):

. count = '%04d' % int(count) #
change integer to string with 4
characters

. yield count, word

e Print out all data and just
snapshot the result needed

Run on Amazon EMR

* The steps on PA3 document are already very clear.

Important Note

» Asingle-threaded implementation of MapReduce will usually not be faster
than a traditional (non-MapReduce) implementation.

* MapReduce is good for multi-threaded implementations.

* S0, to get full credit, do not use the traditional implementation to finish the
PA. Please use mrjob.

