Chord: A scalable Peer-
Protocol for Internet Applications

[on Stoica; Robert Morris, David Karger, M. Frans
Kaashoek, Hari Balakrishnan

MIT Laboratory for Computer Science
Chord@ics.mit.edu
http://pdos.lcs.mit.edu/chord/

mailto:Chord@ics.mit.edu

Introduction
* System Model

e Chord Protocol

* Simulation and Experimental Results
e Future Work

 Weakness

Motivation |

Distributed Solution (2)

—

L

'7775“‘ \.
.‘..h 7

[|
L Jy

* Chord provides peer-to-peer hash lookup ser ice:
® Lookup(key) — IP address

* Features:
Simplicity
provable correctness
provable performance

* How does Chord distribute files?

* How does Chord build routing tables?

* How does Chord locate a node?

* How does Chord maintain routing tables?

* How does Chord cope with changes in membership?

L.oad balance
= Chord acts a distributed hash function

* Decentralization: fully distributed

Scalability with high probability
* O(log N) routing tables
= O(log N) lookup
* O(log? N) join/leave

Availability
* Flexible naming

Fast distributed computation of a hash function mapping
keys to nodes.

Using consistent hashing
-- load balance

--minimum necessary to maintain a
balanced load

Scalability: A node needs a small amount of information

* Each node and key has an m-bit identifier
* Node's identifier
- hashing the node’s IP address
* Key’s identifier
— hashing the key
* Key k is assigned to the successor(k)

— identifier of successor(k) is equal to or follows Kk’s
identifier

Chord IDs |

THEOREM 1. >

For any set of N nodes and K keys, with high
probability:

1. Each node is responsible for at most (1+€)K/N keys (e=0(logN))

2. When an (N+1)st node joins or leaves the network, responsibility for
O(K/N) keys changes hands.

How to maintain the successor information correctly?

* N, maintains a routing table with m entries, called the
finger table

* j["entry is S = successor(n+2-1)
-- S succeeds n by at least 2! on the identifier circle

— Scalable

Q

-- finger table example

Finger tables and key locations for a net with nodes 0, 1, and 3 and keys 1, 2 and 6.

= i

s
nt. kEuwo |_|a|
1
3
i
mnoar o
s@rt] ink. o)
3 |Ee | 2
E [ET] @
Tingar ke
z@rt] int. o)
[45] | O

[7a] 5

/ ==What happens when a noc

* N finds a node whose ID is closer than its own to k

* N searches its finger table for the node j, whose ID most immediately
precedes k

* N asksj for the node it knows whose ID is closest to k
* Repeat this process, N learn s about nodes with ids closer and closer to k

A faster algorithm uses a “finger” table on each node, somewhat similar to a skip
M1

lookup(54)
re
"
M51
MN14
M4g
M2
42

NZ8

M3z

THEOREM 2.

With high probability, the number of nodes that must be
contacted to find a successor in an N-node network is

O(logN);

* Three step process:

® [nitialize all fingers of new node
= Update fingers of existing nodes
* Transfer keys from successor to new node

@ N21

B N21

; N2 : N21

L K24 L K24

N32 N32 N32 N32
K24 K24 K24 K30

Before Node6 joining

Changed entries are shown in black, and unchanged in gray

After Node6 joining

finger table

[

oy

shart] il |sucic
THE

i &

=

firgger table

shart

ﬁ_

Inl._|suca

HE

[s1i| &

Ffl

To ensure locating every key in the network, Chord needs
to preserve two invariants:

Each node’s successor is correctly maintained

For every key k, node successor(k) is responsible for k

Less aggressive mechanism (lazy finger update):

® Initialize only the finger to successor node

= Periodically verify immediate successor, predecessor
= Periodically refresh finger table entries

Stabilization

-- to keep nodes’ successor pointers up to date

N36 is a newly-joint node.

N99

N8O

NS

N60

Stabilize:
ask N40’s
predecessor

N20

1. N36 notifies N40 of Its
existence

2. N40 updates its pre. To
N36

Successor=N36

N36 SuccessogzNJO\IZO aSkS ItS SUCCeSSOor

N40

N40 for N40’s predecesso

4. N20 and N36 update

Predecessor=N36

their successor and
predecessor

THEOREM 3.

If any sequence of join operations is executed interleaved
with stabilizations, then at some time after the last join the
successor pointers will form a cycle on all the nodes in the
network

* Lookup behavior during joins
= lookup fails if successor/predecessor are incorrect

* the higher level software needs to retry

= Jookup succeeds, but it is slower if fingers are not yet updated; in
most cases still O(log N)

« THEOREM 6.

If we take a stable network with N nodes, and another set of up to N
nodes joins the network with no finger pointers (but with correct
successor pointers), then lookups will still take O(log N) time with high
probability

Node Leaving example

Before Nodel Leaving

Changed entries are shown in black, and unchanged in gray

finger tobke
stat [int. s
T , i
o |0, i
2 |[26] 3

After Nodel Leaving

fingar table ki
start] ink._[suoc I__El
a1
2 [[24] 2
4 [[40)] &
finger table ke
start]| inl._[succ rfl

2 R 2

i |3.:--]

5 |1 &
finger table keys
start| int._|sical

4 [[d51] &

] Tl B

7oAl 0

[a)

firger table ke fingger table k

shart) int. |suce atat| int. Euci ﬁ

T[] a 1 (140

n|ma o 2 [.".-ﬂ i

7|26 3 4 [[40)] &
finger table b,
start| int. |suec II
4 |[45] 6
5| [aTl] B
oAl

Handing Failures

Handling Failures

\\[6]0

« THEOREM 5.

If we use a successor list of length r=0(log N) in a network that is
initially stable, and then every node fails with probability 12, then with
high probability find-successor returns the closest living successor to
the query key

* THEOREM 6.

In a network that is initially stable, if every node then fails with

probability 2, then the expected time to execute find-successor is
O(logN).

Load Balance

500

450

400

W

o

0

o

Mumber of keys par node

15t and #th perceniiles H—

Figure 7: (a) The mean value, the 1st and the 99th percentiles of the number of keys stored by anode na 10 node network.

0

1 & [
Total nurmer of keys fx 10,000)

(a)

100

POF

0025

omg

0015 -

0mE

0.00s -

0
0

Al b iy ra. bl 1 |

5]

100

160 200 @s0 M0 3&) 400 480 =00
Murmber of keys per nede

(b)

(b) The probability density function (PDF) of the number of keys per node. The total number of keys is 5 x 105,

The 99t percentile decreases from 4.8x to 1.6x the mean value, while the 15t
percentile increases from 0 to 0.5 the mean value

— adding virtual nodes as an indirection layer can significantly improve load
balance

GO0 = T
1stand & peranties <
480 .
400
380 -
30 -

280 -

e

FUMmber of keys per rode

1
1 10
Humber ol vidua nodes

Figure 8 The Ist and the 99th percentiles of the number of keys per node as a function of virtual nodes mapped to a real
node. The network has 107 real nodes and stores 106 keys.

The measured path length is about 1/2logN

12

Path kEngth
[=£]

15l and 29th percenliks H—

(a)

100 1000
Mumber of nodes

1 M| 1
0000

100000

POF

02

01

0.08

N = 2K storing 100x 2¥ keys in all. K is varied from 3 to 14 and each node
picked a random set of keys to query from the system.

12

Figure 9: (a) The path length as a function of network size. (b) The PDF of the path length in the case of a 2*2 node network.

Simultaneous Node Failures

The path length and the number of timeouts experienced by a lookup as
function of the fraction of nodes that fail simultaneously. The 15t and the
99th percentiles are in parenthesis. Initially, the network has 1000 nodes.

Predicted value is a little larger than the measured value because the
series is finite in practice

Timeouts match well the measure number
All lookups were successfully resolved - robustness

Fraction of Mean path length Mean num. of limeouts
failed nodes | (1st, %9th percentiles) (1st, 99th percentiles)

i) T TS L (L, LA

0.1 ENTEN Ay D

L s L R i AL s

0.3 444 (2. hi 202 (0, 5]

L1 Rl Aaaill &)

05 50013, &) S0, 11

IARLE T

Lookups During Stabilization

Key lookups, stabilization are modeled with a certain rate. Change the joins and

voluntary leaves rate.

* Measured path length is very close to the predicted value

* Measured timeouts are reasonable close to the predicted value

* Reason for the lookup failures is state inconsistency

Node join/leave rale Mean path length | Mean num. of timeouts | Lookup failures
per second/per stab. period) | (1st, ®th percentiles) | (15t 99th percentiles) | (per 10,000 lookups)
005715 10011, % 050, 2 I
M R TN I
015745 L0 0160 2] 2
020 1809 .24 {L, 5] 3
VTR TR (1, 0] RN ?

030/ IR U4 (4] 3
U3/ 103 AL 0 U42{0 4] |5
[ETHN L0611, 1] IESYIR]] 15

TABLETI

Motivation:

the node identifiers are randomly distributed, and therefore nodes
close in the identifier space can be far away in the underlying network.

Solution:

Each finger maintain a set of alternate nodes.

Route the queries by selecting the node among the alternate nodes
according to some network proximity metirc

Experimental Results

The lookup stretch of Chord system with 216 nodes and two
network topologies are measured (3-d space and Transit stub)

The lookup stretch is defined as the ratio between the

-- latency of a Chord lookup
-- latency of an optimal lookup using the underlying network

Results show that this heuristic is quite effective, the stretch
decreases significantly as s increases.

Number of

Streteh (10th, 20th percentiles)

fingers” successors lterative Keeursive
(2] A space Transit stub - space Transit stub
| TEEA 198 [720443600 [45025 1150 | 41027, 4.0)
2 TR EXO A N A B R I T P A
4 G, 153 | 6432, 3060 | 27016 641 | 28018 12.7)
% =N) TN T O A N M T E T
(& AL adl | L d Tl T R T A AT

Based on theoretical work (consistent hashing)

Proven performance in many different aspects “with
high probability” proofs

No specific mechanism to heal partitioned rings

Find a way to check the malicious or buggy set of Chord

participants
-- Malicious data insertion

-- Malicious Chord table information

logN messages per lookup many be too many for some
applications of Chord

* Hashing both nodes and keys completely destroys locality

. advantage: resistance to geographic attacks
. disadvantage: longer network hops

* Chord does not provide a degree of anonymity compared to Freenet whose
lookups take the form of searches for cached copies.

* NOT that simple (compared to CAN)
* Member joining is complicated
-- requires too many messages and updates
* Routing table grows with number of members in group

* Worst case lookup can be slow

Thank you!

Any question?

