
Chord: A scalable Peer-to-Peer Lookup
Protocol for Internet Applications

Ion Stoica; Robert Morris, David Karger, M. Frans
Kaashoek, Hari Balakrishnan

MIT Laboratory for Computer Science

Chord@ics.mit.edu

http://pdos.lcs.mit.edu/chord/

mailto:Chord@ics.mit.edu

Outline

• Introduction

• System Model

• Chord Protocol

• Simulation and Experimental Results

• Future Work

• Weakness

Motivation

How to locate a data item in a dynamic peer-to-peer system?

 Lookup is the key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5 N4
Client ?

Centralized Solution

 Requires O(M) state

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5 N4
Client

DB

 Central server (Napster)

Distributed Solution (1)

 Worst case O(N) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5 N4
Client

Flooding (Gnutella, Morpheus, etc.)

Distributed Solution (2)

Routed messages (Freenet, Tapestry, Chord, CAN, etc.)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5 N4
Client

Only exact matches

Introduction

• Chord provides peer-to-peer hash lookup service:
 Lookup(key)  IP address

• Features:
 Simplicity

 provable correctness
 provable performance

• How does Chord distribute files?
• How does Chord build routing tables?
• How does Chord locate a node?
• How does Chord maintain routing tables?
• How does Chord cope with changes in membership?

System Mode

• Load balance

 Chord acts a distributed hash function

• Decentralization: fully distributed

• Scalability with high probability

 O(log N) routing tables

 O(log N) lookup

 O(log2 N) join/leave

• Availability

• Flexible naming

Chord Protocol
-- overview

• Fast distributed computation of a hash function mapping
keys to nodes.

• Using consistent hashing

 -- load balance

 --minimum necessary to maintain a
balanced load

• Scalability: A node needs a small amount of information

Chord Protocol
-- Consistent Hashing

• Each node and key has an m-bit identifier

• Node’s identifier

 – hashing the node’s IP address

• Key’s identifier

 – hashing the key

• Key k is assigned to the successor(k)

 – identifier of successor(k) is equal to or follows k’s
identifier

Chord IDs

m bit identifier space for both keys and nodes

Key identifier = SHA-1(key)

Key=“LetItBe” ID=60 SHA-1

IP=“198.10.10.1” ID=123 SHA-1

 Node identifier = SHA-1(IP address)

Both are uniformly distributed

How to map key IDs to node IDs?

A key is stored at its successor: node with equal or next higher ID

N32

N90

N123 K20

K5

Circular 7-bit

ID space

0 IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

K32

THEOREM 1.

 For any set of N nodes and K keys, with high
probability:

1. Each node is responsible for at most (1+є)K/N keys (є=O(logN))

2. When an (N+1)st node joins or leaves the network, responsibility for
O(K/N) keys changes hands.

Simple Key Location

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Every node knows its successor in the ring

requires O(N) time

Scalable Key Location

 How to maintain the successor information correctly?

• N, maintains a routing table with m entries, called the
finger table

• ith entry is S = successor(n+2i-1)

 -- S succeeds n by at least 2i-1 on the identifier circle

Scalable Key Location
-- finger table example

 Finger tables and key locations for a net with nodes 0, 1, and 3 and keys 1, 2 and 6.

Scalable Key Location
--What happens when a node does not know the successor of a key k?

• N finds a node whose ID is closer than its own to k

• N searches its finger table for the node j, whose ID most immediately
precedes k

• N asks j for the node it knows whose ID is closest to k

• Repeat this process, N learn s about nodes with ids closer and closer to k

A faster algorithm uses a “finger” table on each node, somewhat similar to a skip
list. The time complexity is down to O(log N)

THEOREM 2.

 With high probability, the number of nodes that must be
contacted to find a successor in an N-node network is
O(logN);

Node Join Implementation

• Three step process:

 Initialize all fingers of new node

 Update fingers of existing nodes

 Transfer keys from successor to new node

Node Join Implementation

Before Node6 joining After Node6 joining
Changed entries are shown in black, and unchanged in gray

• To ensure locating every key in the network, Chord needs
to preserve two invariants:

1. Each node’s successor is correctly maintained

2. For every key k, node successor(k) is responsible for k

• Less aggressive mechanism (lazy finger update):

 Initialize only the finger to successor node

 Periodically verify immediate successor, predecessor

 Periodically refresh finger table entries

Predecessor=N36

Stabilize:

ask N40’s

predecessor Successor=N36

Predecessor=N20

Successor=N40

Stabilization
-- to keep nodes’ successor pointers up to date

N60
N40

N5

N20

N99

N80

N36

N36 is a newly-joint node.

1. N36 notifies N40 of its

existence

2. N40 updates its pre. To

N36

3. N20 asks its successor

N40 for N40’s predecessor

4. N20 and N36 update

their successor and

predecessor

THEOREM 3.

 If any sequence of join operations is executed interleaved
with stabilizations, then at some time after the last join the
successor pointers will form a cycle on all the nodes in the
network

Impact of Node Joins on Lookups

• Lookup behavior during joins
 lookup fails if successor/predecessor are incorrect

• the higher level software needs to retry

 lookup succeeds, but it is slower if fingers are not yet updated; in
most cases still O(log N)

• THEOREM 6.
 If we take a stable network with N nodes, and another set of up to N

nodes joins the network with no finger pointers (but with correct
successor pointers), then lookups will still take O(log N) time with high
probability

Node Leaving example

Before Node1 Leaving After Node1 Leaving
Changed entries are shown in black, and unchanged in gray

Handing Failures

Failure of nodes might cause incorrect lookup

N120

N103

N102

N80

N85

N10

Lookup(90)

N80 doesn’t know correct successor, so lookup fails

Successor List are enough for correctness

N103

N120

N10

……

Handling Failures

Use successor list

-- Each node knows r immediate successors

-- After failure, will know first live successor

-- Correct successors guarantee correct lookups

Guarantee is with some probability

choose r to make probability of lookup failure arbitrarily small

Voluntary Node Departures

N36

Predecessor=N36

Successor list:

N36 N40 N60

N60
N40

N5

N20

N99

N80
Transfer its

keys

Successor list:

N40 N60 N80

N60
N40

N5

N20

N99

N80

Predecessor=N20

• THEOREM 5.

 If we use a successor list of length r=O(log N) in a network that is
initially stable, and then every node fails with probability ½, then with
high probability find-successor returns the closest living successor to
the query key

• THEOREM 6.

 In a network that is initially stable, if every node then fails with

probability ½, then the expected time to execute find-successor is
O(logN).

Simulation and Experiment Results

• Load Balance

Application of Virtual nodes

 The 99th percentile decreases from 4.8x to 1.6x the mean value, while the 1st
percentile increases from 0 to 0.5 the mean value

 – adding virtual nodes as an indirection layer can significantly improve load
balance

Path Length

 N = 2k , storing 100x 2k keys in all. K is varied from 3 to 14 and each node
picked a random set of keys to query from the system.

 The measured path length is about 1/2logN

Simultaneous Node Failures

 The path length and the number of timeouts experienced by a lookup as
function of the fraction of nodes that fail simultaneously. The 1st and the
99th percentiles are in parenthesis. Initially, the network has 1000 nodes.

• Predicted value is a little larger than the measured value because the
series is finite in practice

• Timeouts match well the measure number

• All lookups were successfully resolved – robustness

Lookups During Stabilization

Key lookups, stabilization are modeled with a certain rate. Change the joins and
voluntary leaves rate.

• Measured path length is very close to the predicted value

• Measured timeouts are reasonable close to the predicted value

• Reason for the lookup failures is state inconsistency

Improving Routing Latency

Motivation:
 the node identifiers are randomly distributed, and therefore nodes

close in the identifier space can be far away in the underlying network.

Solution:
• Each finger maintain a set of alternate nodes.

• Route the queries by selecting the node among the alternate nodes
according to some network proximity metirc

Experimental Results

• The lookup stretch of Chord system with 216 nodes and two
network topologies are measured (3-d space and Transit stub)

• The lookup stretch is defined as the ratio between the

 -- latency of a Chord lookup

 -- latency of an optimal lookup using the underlying network

• Results show that this heuristic is quite effective, the stretch
decreases significantly as s increases.

Strengths

Based on theoretical work (consistent hashing)

Proven performance in many different aspects “with
high probability” proofs

Future work

• No specific mechanism to heal partitioned rings

• Find a way to check the malicious or buggy set of Chord
participants

-- Malicious data insertion

-- Malicious Chord table information

• logN messages per lookup many be too many for some
applications of Chord

• ……

Weakness

* Hashing both nodes and keys completely destroys locality
 advantage: resistance to geographic attacks
 disadvantage: longer network hops

* Chord does not provide a degree of anonymity compared to Freenet whose

lookups take the form of searches for cached copies.

* NOT that simple (compared to CAN)

* Member joining is complicated

 -- requires too many messages and updates

* Routing table grows with number of members in group

* Worst case lookup can be slow

* ……

Thank you !

Any question?

