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Outline

● What is TensorFlow?

● Why did we create TensorFlow?

● How does TensorFlow work?

● Parallelisms: Data and Model

● Fault Tolerance

● Wrapping up

- Architecture in comparison with Mapreduce



● Fast, flexible, and scalable 

open-source machine learning 

library

● One system for research and 

production

● Runs on CPU,GPU,TPU, and 

Mobile

● Apache 2.0 license



Machine learning gets complex quickly

Modeling complexity

2015Google's inception Network 



Machine learning gets complex quickly

Heterogenous  

System
Distributed  

System



TensorFlow Handles Complexity

Modeling complexity Heterogenous  

System
Distributed  

System



Under the Hood



A multidimensional array.

A graph of operations.



The TensorFlow Graph

Computation is defined as a graph

● Graph is defined in high-level language (Python)

● Graph is compiled and optimized

● Graph is executed (in parts or fully) on available low 

level devices (CPU, GPU,TPU)

● Nodes represent computations and state

● Data (tensors) flow along edges

Stochastic Gradient Descent (SGD)



Build a graph; then run it.

...
c = tf.add(a, b)

...

session = tf.Session()
value_of_c = session.run(c, {a=1, b=2})

add

a b

c



Any Computation is a TensorFlow Graph

MatMul

Add Relu

biases

weights

examples

labels

Xent

A single neural network layer; a primitive linear classifier 



Any Computation is a TensorFlow Graph

MatMul

Add Relu

biases

weights

examples

labels

Xent

variables



Automatic Differentiation

Xent

biases

... grad

Automatically add ops which 

compute gradients for variables



Any Computation is a TensorFlow Graph

Simple gradient descent:

Xent Mul

biases

...

learning rate

−=grad



Any Computation is a TensorFlow Graph

Device BDevice A

Add Mul

biases

learning rate

−=...

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

...



Send and Receive Nodes

Device BDevice A

Add Mul

biases

learning rate

−=...

...

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc



Send and Receive Nodes

Device A Device B

Add Mul

biases

learning rate

−=...

Send

Recv

Send Recv

Send Recv

... RecvSend

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc



From perspective of Linear 
Regression



Linear Regression

y = Wx + b

input

parameters

result



What are we trying to do?

Mystery equation:y = 0.1 * x + 0.3 + noise

Model:y = W * x + b

Objective:Given enough (x,y) value samples, figure out 

the value of W and b.



y =Wx + b inTensorFlow

import tensorflow as tf



y = W    x+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)



y = Wx+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

W = tf.get_variable(shape=[], name=”W”)



y = Wx+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

W = tf.get_variable(shape=[], name=”W”) 

b = tf.get_variable(shape=[], name=”b”)



y = Wx+ b in TensorFlow

import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32, name=”x”)

W = tf.get_variable(shape=[], name=”W”)

b = tf.get_variable(shape=[], name=”b”)

y = W * x + b

+

matmul

W

b

x

y



init_op = tf.initialize_all_variables()

Variables Must be Initialized
Collects all variable initializers

Makes an execution environment

Actually initialize the variables

+

matmul

W

b

x

init_op

assign

assign

initializer

initializer

sess = tf.Session()

sess.run(init_op)

y



feed

fetch

Running the Computation

+

matmul

W

b

x

y
x_in = 3

sess.run(y, feed_dict={x: x_in})

● Only what’s used to compute a fetch will 

be evaluated

● AllTensors can be fed, but all 

placeholders must be fed



import tensorflow as tf

x = tf.placeholder(shape=[None],

dtype=tf.float32,  

name='x')

W = tf.get_variable(shape=[], name='W')

b = tf.get_variable(shape=[], name='b')

y = W * x + b

with tf.Session() as sess:

sess.run(tf.initialize_all_variables())

print(sess.run(y, feed_dict={x: x_in}))

Putting it all together

Build the graph

Prepare execution environment

Initialize variables

Run the computation (usually often)



Define a Loss

Given x, y compute a loss, for instance:

# create an operation that calculates loss.
loss = tf.reduce_mean(tf.square(y - y_data))



Minimize loss: optimizers

tf.train.AdadeltaOptimizer

tf.train.AdagradOptimizer

tf.train.AdagradDAOptimizer

tf.train.AdamOptimizer

…

error

function minimum

parameters (weights, biases)



Train
Feed (x, y

label
) pairs and adjust Wand b to decrease the loss.

W ←W - 1 ( dL/dW )

# Create an optimizer

optimizer = tf.train.GradientDescentOptimizer(0.5)

# Create an operation that minimizes loss.

train = optimizer.minimize(loss)

b ← b - 1 ( dL/db ) TensorFlow computes 
gradients automatically

Learning rate



loss = tf.reduce_mean(tf.square(y - y_label))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

with tf.Session() as sess:

sess.run(tf.initialize_all_variables())

for i in range(1000):

sess.run(train, feed_dict={x: x_in[i],

y_label: y_in[i]})

Putting it all together
Define a loss

Create an optimizer

Op to minimize the 

loss

Iteratively run the 

training op

Initialize variables



TensorBoard



Parallelism



Data Parallelism
Parameter Servers

...

...Data

Model 

Replicas



Data Parallelism

Parameter Servers

...

...Data

Model 

Replicas

p’

p’ = p + ∆p



Data Parallelism

Parameter Servers

...
Model 

Replicas

p’∆p’

...Data

p’’ = p’ + ∆p



Data Parallelism

Parameter Servers

...
Model 

Replicas

p’∆p’

p’’ = p’ + ∆p

...Data



Model Parallelism



Fault Tolerance

• Assumptions: 
• Fine grain operations: “It is unlikely that tasks will fail so often that individual 

operations need fault tolerance” 

• “Many learning algorithms do not require strong consistency”

• Solution: user-level checkpointing (provides 2 ops)
• save(): writes one or more tensors to a checkpoint file

• restore(): reads one or more tensors from a checkpoint file



Distributed training mechanisms

Graph structure and low-level graph primitives (queues) allow us to play with 

synchronous vs. asynchronous update algorithms.



Architecture from 
perspective of MapReduce



Detailed architecture

From: https://www.tensorflow.org/extend/architecture



46

Thank you!

Thank you!
Questions?



Reference Slides

https://learning.acm.org/binaries/content/assets/leaning-
center/webinar-
slides/2016/martinwicke_tensorflow_webinarslides.pdf

https://www.matroid.com/scaledml/slides/jeff.pdf

https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2016/martinwicke_tensorflow_webinarslides.pdf
https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2016/martinwicke_tensorflow_webinarslides.pdf
https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2016/martinwicke_tensorflow_webinarslides.pdf
https://www.matroid.com/scaledml/slides/jeff.pdf
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