
OPTIONAL SUBHEAD HERE

Advanced Text Generation Application
Using Large Language Models

The Goal of This LLM Quiz

• Leverage state-of-the-art natural language processing

(NLP) techniques to generate coherent and contextually

relevant text based on the input.

• Explore the creative capabilities of AI in text generation

by utilizing the Hugging Face “transformers” library and

the GPT-2 model.

2

Overview

• Create an application using the Hugging Face

“transformers” library and GPT-2 model.

• Input a prompt and customize text generation

parameters.

• Save and compare the results from different

parameters and make your own conclusion.

3

Step 1: Install Required Packages

1. Install Python 3.7 or later version.

 https://www.python.org/downloads/

1. Open your terminal or command prompt:

 Windows: Press “Win + R” and search “cmd”

 MacOS: Press “Cmd + Space” and search “Terminal”.

 Linux: Press “Ctrl + Alt + T”.

4

https://www.python.org/downloads/

Step 1: Install Required Packages

3. Install the necessary packages in your terminal or

command prompt (you may use ‘pip3’ here).

5

Step 2: Create the python script and
implement the code

1. Create a new python file with the name

‘text_generator.py’ or any name you prefer.

2. Copy and paste the code from the quiz introduction

in the Canvas “Files” folder into your created

‘text_generator.py’ file.

6

Step 2: Create the python script and
implement the code

generator = pipeline('text-generation', model='gpt2', device=-1) # Use CPU

def generate_text(prompt, max_length=100, temperature=0.7,

num_return_sequences=1):

results = generator(prompt, max_length=max_length,

num_return_sequences=num_return_sequences, temperature=temperature)

return [result['generated_text'] for result in results]

7

Create the text generator with the required parameters:

 prompt: Input text that leads to the results.

 max_length: The maximum length of your generated

 texts (include the input prompts).

 temperature: The randomness of your generated texts.

 num_return_sequences: The number of generated paragraphs.

Step 2: Create the python script and
implement the code

8

In the context of Large Language Models (LLMs), "temperature" refers to a parameter that controls the
randomness of the model's output during text generation. It influences how the model selects the
next word in a sequence based on the predicted probabilities. Here's how it works:

• Lower Temperature (e.g., 0.1):

• Makes the model more deterministic and focused.

• It prioritizes the most probable predictions, reducing randomness.

• This is useful for tasks where precision and accuracy are important, such as factual answers.

• Higher Temperature (e.g., 1.0 or more):

• Increases randomness and creativity in the output.

• The model is more likely to select less probable predictions, leading to varied and diverse
results.

• This is beneficial for creative tasks like storytelling or brainstorming.

• Temperature = 0:

• The model always chooses the highest-probability word, resulting in fully deterministic
outputs.

• In summary, adjusting the temperature allows you to control the balance between creativity and
reliability in the model's responses, tailoring it to different use cases.

Step 2: Create the python script and
implement the code

def save_to_file(text, filename='generated_text.txt’): # Change the

filename to save the results in a different file

with open(filename, 'w', encoding='utf-8') as file:

file.write(text)

print(f"Generated text saved to {filename}")

9

Save your generated texts into the target .txt file.

Change the “filename” to save the generated texts into a different file.

Step 2: Create the python script and
implement the code

def main():

print("Welcome to the Advanced Text Generator!")

prompt = input("Enter your prompt text: ")

max_length = int(input("Enter the maximum length of generated text

(recommended 30-100): "))

temperature = float(input("Enter temperature (recommended range 0.5-

1.0, higher means more random): "))

num_return_sequences = int(input("Enter the number of text paragraphs

to generate: "))

10

Allow you to enter your own prompt, max_length, temperature, and

num_return_sequences in the terminal or command prompt.

Step 2: Create the python script and
implement the code

def main():

 ’’’ previous code ’’’

Start timing

start_time = time.time()

Generate text

generated_texts = generate_text(prompt, max_length=max_length,

temperature=temperature, num_return_sequences=num_return_sequences)

Stop timing

end_time = time.time()

print(f"\nText generation took: {end_time - start_time:.2f} seconds\n")

11

Generate the texts using defined function “generate_text()”.

Collect the time required to generate the texts.

Print out the generated texts in different paragraphs.

Step 2: Create the python script and
implement the code

def main():

 ’’’ previous code ’’’

for i, generated_text in enumerate(generated_texts, 1):

print(f"Generated Text Paragraph {i}:")

print(generated_text)

print("-" * 40)

12

Save your generated texts using the defined function “save_to_file()”.

Step 2: Create the python script and
implement the code

def main():

 ’’’ previous code ’’’

save_choice = input("Would you like to save the generated text to a

file? (yes/no): ")

if save_choice.lower() == 'yes':

all_texts = "\n\n".join(generated_texts)

save_to_file(all_texts)

13

Step 3: Run the Application

1. Open your terminal or command prompt and

navigate to the directory of ‘text_generator.py’.

2. Run the python script ‘text_generator.py’ (you may

use ‘python3’ here).

14

Step 4: Test and Experiment

1. Try different prompts and explore how the model

responds to various input prompts.

2. Try different values for maximum length,

temperature, and number of outputs. Observe how

it influences the generated text.

15

Step 5: Observation and Conclusion

1. Make your own observation and conclusion about how

the results will change when you have different

parameters, especially different temperatures.

2. Please write down your observations and conclusions in

a Word document, and take a screenshot of your

outputs and put it in the Word document. Once

completed, upload the document to the quiz.

16

Step 5: Observation and Conclusion

Sample of your observation and conclusion:

 When the temperature changes from XX to XX, the

different generated text paragraphs tends to be more

coherent/creative, and they are more similar/different

with each other.

 Thus the temperature will affect the XXX of the text

generation process, where the low/high temperature

generates more predictable texts and vice versa.

17

	Slide 1
	Slide 2: The Goal of This LLM Quiz
	Slide 3: Overview
	Slide 4: Step 1: Install Required Packages
	Slide 5: Step 1: Install Required Packages
	Slide 6: Step 2: Create the python script and implement the code
	Slide 7: Step 2: Create the python script and implement the code
	Slide 8: Step 2: Create the python script and implement the code
	Slide 9: Step 2: Create the python script and implement the code
	Slide 10: Step 2: Create the python script and implement the code
	Slide 11: Step 2: Create the python script and implement the code
	Slide 12: Step 2: Create the python script and implement the code
	Slide 13: Step 2: Create the python script and implement the code
	Slide 14: Step 3: Run the Application
	Slide 15: Step 4: Test and Experiment
	Slide 16: Step 5: Observation and Conclusion
	Slide 17: Step 5: Observation and Conclusion

