VIRGINIA

v

PA3 Tutorial

CS 4740 Cloud Computing

Department of Computer Science,
University of Virginia, USA

e

 VViedo for computer program:

http://www.youtube.com/watch?v=bUB1RIpbFNs&mode=related&sear
ch=

http://www.youtube.com/watch?v=bUB1RIpbFNs&mode=related&search

Goal of this PA

« Gain hands-on experience with the MapReduce framework

« Understand the input and output of each phase
» <key, value> pair

Python mrjob -- First Job in the Tutorial in “Fundamentals®

« A “step” consists of a mapper, a
combiner (shuffle?, and a reducer. All of

Required: import class

those are optional, though you must MRJob from theNIiEm.
have at least one. from mrjob.job import MRIocb
« Map input Required: Inherit

* a key and a value 1in this case, the key is I , .
ignored and a single line of text input is the ©1ass MRWordFrequencyCount(MRIab):

value Each line
Map output def mapper(self, _, line):
keys f h li f yield “chars”, len(line)
3 keys for each line of text I I e T e e
* Number of characters, number of words,

and number of lines yield "lines’, 1 An iterator of
) key value “wvalues
 Reduce Input def reducer(self, key, wvalues):
» a key and an iterator of values yield key, sum{values)
 Why an iterator of values? Because all the Defined by yourself

values of the same key are passed to the
same reducer. if name == ' main
Reduce Output MRWordFrequencyCount. run()
« Sum the values for each key

« Total number of characters, total number of
words, total number of lines in the text

. Required

https://pythonhosted.org/mrjob/guides/quickstart.html

Running the Job

The most basic way to run your job 1s on the command line:
% python my job.py input.txt
By default, output will be written to stdout.

If you like to save output to a file, then add “> file name”

The second job in the Tutorial in
“Fundamentals™

* Most of the time, you'll need more than one step in your job. To
define multiple steps, override steps() to return a list of
MRSteps.

def steps(self):
return |
MRStep(mapper=self.mapper get words,
combiner=self.combiner count words,
reducer=self.reducer count words}),
MRStep(reducer=self.reducer find max word)

]

https://pythonhosted.org/mrjob/guides/quickstart.html

The second job

Read this program!

Find the word with
the highest
occurrences.

from mrjob.job import MRIcb
from mrjob.step import MRStep
import re

WORD RE = re.compile(r"[‘w']+")

class MRMostUsedWord(MRIcb):

def steps(self):
return [

MRStep({mapper=self.mapper_get words,
combiner=self.combiner count words,
reducer=self.reducer count words},

MRStep(reducer=self.reducer_find_max_word)

]

def mapper_get _words({self, _, line):
yield each word in the line
for word in WORD_RE.findall(line}:
yield (word.lower(), 1)

def combiner_count_words(self, word, counts):
optimizotion: sum the words we've seen so far
yield (word, sum{counts))

def reducer count words(self, word, counts}):
send all (num_occurrences, word) pairs to the same reducer.
num_occurrences is so0 we can easily wuse Python's max() function.
yield Mone, (sum{counts), word)

discard the key; it is just None

def reducer find max word(self, , word count pairs):
each item of word _count_pairs is (count, word),
so yielding one results in key=counts, value=word
yield max{word count pairs)

if npame == "' main_ ':
MRMostUsedWord. rund }

firom mrjob.job import MRIob
from mrjob.step import MRStep
import re

WORD RE

= re.compile{r"['w"]4+")

class MRMostUsedWord(MRIcb):

def

def

def

def

steps(self):
return [

MRStep({mapper=self.mapper_get words,
combiner=self.combiner count words,
reducer=self.reducer count words),

MRStep({reducer=self.reducer_find_max_word)

]

mapper_get_words(self, _, line):

yield each word in the Lline

for word in WORD_RE.findall{line}:
yield (word.lower(), 1)

combiner_count_words(self, word, counts):
optimization: sum the words we've seen so far
yield (word, sum{counts))

reducer count words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.

num_occurrences is so0 we can easily wuse Python's max() furmction.

yield Mone, (sum{counts), word)

discard the key; it is just None

def

reducer find max word(self, , word count pairs):

each item of word count_pairs is (count, word),

so yielding one results in key=counts, value=word
yield max{word count pairs)

if npame == "' main_ ":
MRMostUsedWord. run{}

Remove punctuation

Define multiple steps

Count each word in one line

Occurrences of each word

Output just one key “ 7, value is a tuple of
(count, word)
So that you can use the max() easily

Output the word that has the highest occurrences

¢ Iine_split = Iine.split(',‘) # sep_length, sep_width, pet_length, pet_width, classification

. classification = line_split[-1] # last element
. sep_length = line_split[0] # first element

e vield classfication, float(sep_width)

* vield key, float(sum(sep_width)) / len(sep_width)

vnunpfuonpfuonumoenununununen B P fon B Ronfonen B B Pur
OO 0 O e e R e O G O e WD P DTN e DO WD

g L L L L) i L L L L B 5 1 L L i L T L L L L L L L
EPORWO I EEENOECOO R RO ERONHNOU
O D 1 D 1~ U1~ B i U1 N O O s s e U s

Lo e e o e e e e o e J e e s e e e e e s s e e e e e e)
B P Ped L Pl s Pl L e P P L P P P P) P P P Pl P P

,lris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
JIris-setosa
Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
JIris-setosa
Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
JIris-setosa
Iris-setosa
Iris-setosa

yield key, float(sum(sep_width)) / len(sep_width)

* This equation does not work for some computers. "float division by zero”
ZeroDivisionError will be shown.

Because the value input of reducer is a generator. Generator in python can be
only used once. After sum(sep_width), the generator becomes empty,
so len(sep_width)=0.

* You can use a "for" loop to calculate the average -- "for i in sep_width".

3) if key =="Iris Setosa":

One tip for Step 4 of PA3 ...

* The output of reducer Is sorted by key.

* Use this feature to sort the occurrences of words.

Step 4

* Original order:

* What we want:

 def map_sort(self, word, count):

. count = '%04d' % int(count) #
change integer to string with 4
characters, 1 becomes 0001

. yield count, word

* Print out all data and just
snapshot the result needed

Run on Amazon EMR

* The steps on PA3 document are already very cleatr.

Important Note

« Asingle-threaded implementation of MapReduce will usually not be faster
than a traditional (non-MapReduce) implementation.

« MapReduce is good for multi-threaded implementations.

« S0, to get full credit, do not use the traditional implementation to finish the
PA. Please use mrjob.

* There is a student in our class who needs a copy of the class notes, so
the Student Disability Access Center is asking for a volunteer
notetaker. Please consider doing this as a great service for one of your
classmates. Please sign up via the SDAC Online Portal at:
http://yukon.accessiblelearning.com/virginia/ApplicationNotetaker.as
PX.

* SDAC has some great prizes to raffle off to successful notetakers at
the end of the semester. Prizes include gift certificates to local

restaurants, shops, and entertainment such as Bodo's, Boylan
Heights, and The Escape Room.

