Cloud Computing

 Server Virtualization



* Virtualization Technique * Ecosystem <

= CPU Virtualization = VMware
* Emulation techniques = Xen
* Trap and emulate model = KVM

* Hardware assistance

= Memory Virtualization .
* Shadow page table

Other Issues

_ = Live migration
* Hardware assistance

= [0 Virtualization = Cloud properties

e Qverview
* Device model
* Hardware assistance



/|

f,
qwlation techniques

ap and emulate paradigm
ardware assistance

PU VIRTUALIZATION



* Why do we talk about emulation ?

= |n fact, virtualization technique can be treated as a special case of
emulation technique.

= Many virtualization techniques were developed in or inherited
from emulation technique.

e (Goal of emulation :

= Provide a method for enabling | GuestISA 1 JI GuestISA 2 J
2 (sub)system to presentthe SRS NEAEEmuEnOR

same interface and characteristics
as another. Host physical hardware




* Three emulation implementations :

= Interpretation
* Emulator interprets only one instruction at a time.

= Static Binary Translation

* Emulator translates a block of guest binary at a time and further optimizes
for repeated instruction executions.

* Dynamic Binary Translation
e This is a hybrid approach of emulator, which mix two approaches above.

* Design challenges and issues :
= Register mapping problem
= Performance improvement



* Interpreter execution flow :

1.
2.
3.

Fetch one guest instruction from guest memory image.
Decode and dispatch to corresponding emulation unit.

Execute the functionality of that instruction and modify some
related system states, such as simulated register values.

Increase the guest PC (Program Counter register) and then repeat
this process again.

Pros & Cons

Pros
e Easy to implement

Cons
e Poor performance






Static Binary Translation

* Using the concept of basic block which comes from
compiler optimization technique.

= A basic block is a portion of the code within a program with certain
desirable properties that make it highly amenable to analysis.

= A basic block has only one entry point, meaning no code within it is
the destination of a jump instruction anywhere in the program.

= A basic block has only one exit point, meaning only the last
instruction can cause the program to begin executing code in a
different basic block.

BasicBlock 1

SUB R1 R2 0Ox00C9
MOV R4 R1

i Basic Block 2 Basic Block 3
Basic Block 4




 Static binary translation flow :
1.
2.

.

Fetch one block of guest instructions from guest memory image.

Decode and dispatch each instruction to the corresponding
translation unit.

Translate guest instruction to host instructions.
Write the translated host instructions to code cache.
Execute the translated host instruction block in code cache.

* Pros & Cons

Pros

e Emulator can reuse the translated host code.
* Emulator can apply more optimization when translating guest blocks.

Cons

* Implementation complexity will increase.






* Interpretation implementation

Guest Binary

rov k1 Rz

Interpreter

Comparison

 Static binary translation implementation

Guest Binary

ADD R1 R2 R3

MOV R1 R2
MOV R3 R4

—

Binary
Translator

——

Host Binary
Code Cache

ADD EXA EXB
MOV EXA EXB

MOV EXC EXD




* A hybrid implementation

= For the first discovered codes, directly interpret by interpreter and
record these codes as discovered.

= As the guest codes discovered, trigger the binary translation
module to translate the guest code blocks to host code blocks, and

place them into code cache.

= When execute the translated block of guest code next time, jump to
the code cache and execute the translated host binary code.

* Pros & Cons

= Pros
* Transparently implement binary translation.

= Cons
* Hard to implement.



Dynamic Binary Translation

1. First time execution, no translated code in code cache.

2. Miss code cache matching, then directly interpret the guest instruction.
3. As a code block discovered, trigger the binary translation module.

4. Translate guest code block to host binary, and place it in the code cache.
5. Next time execution, run the translated code clock in the code cache.

Binary
Translator
Guest Binary Ttrigger Host Binary
mulation ——»
<'I:> Manager €—— - -

_ "
returnT lmiss - -

Interpreter






Register Mapping Problem

* Why should we map registers ?
= Different ISA will define different number of registers.

= Sometimes guest ISA even requires some special purpose register
which host ISA does not define.

Guest ISA Host ISA

Source Register Block ~ Register 1

Source Memory Image Register 2

Register 3

Program Counter

.
.
O

Stack Pointer Register 4

Register 1 Register 5

Register 6

Register 2

|..(.|IIIII

Register N Register N+ 4



* Mapping different purpose of registers :
= Map special purpose registers
* Program Counter Register
e Stack Pointer Register
* Page Table Register
* System Statues Register
e Special Flags Register

Hold guest context and memory image

Map general purpose registers

Map intermediate values




* [fthe number of host registers is larger the guest
= That will be an easier case for implementation.

= Directly map one register of guest to one of host, and make use of
the rest registers for optimization.

= Example:
* Translating x86 binary to RISC

* [f the number of host registers is not enough
= That should involve more effort.

* Emulator may only map some frequently used guest registers to
host, and left the unmapped registers in memory.

= Mapping decision will be critical in this case.



SRS T S

b

Y -

Y o
v FEA

 What introduces the performance hit ?

= Control flow problem

e Highly frequent context switches between code caches and emulation
manager will degrade performance.

= Target code optimization

* Translate guest code block in instruction-wise (translate one instruction at
a time) will miss many optimization opportunities.

* Solutions:
* Translation Chaining
= Dynamic Optimization



Translation Chaining

* Non-optimized control flow
between translated blocks and
emulation manager. TrﬂﬂSlatI.OﬂBlOCkl

Host Binary Code Cache

Emulation
Manager

Context Switches

Return to Emulation Manager



Translation Chaining

* Jump from one translation Host Binary Code Cache
directly to next, which Translation Block 1
avoids switching back to
emulation manager. p

Emulation
Manager

Return to Emulation Manager



* How to optimize binary codes ?
= Static optimization (compiling time optimization)

e Optimization techniques apply to generate binary code base on the
semantic information in source code.

= Dynamic optimization (run time optimization)
e Optimization techniques apply to generated binary code base on the
run time information which relate to program input data.

 Why we use dynamic optimization technique ?

= Advantages :
* It can benefit from dynamic profiling.
* Itis not constrained by a compilation unit.
* It knows the exact execution environment.



 How to implement dynamic optimization ?
= Analyze program behavior in run time.

= (Collect run time profiling information based on the input data and
host hardware characteristics.

* Dynamically translate or modify the binary code by reordering
instructions or other techniques.

= Write back the optimized binary into code cache for next execution.



How to analyze program behavior and profile ?

= (Collect statistics about a program as it runs
* Branches (taken, not taken)
* Jump targets
* Data values
* Cache misses
= Predictability allows these statistics to be used for optimizations to
be used in the future




* Dynamic binary translation and optimization :

Binary
Translator

trigger

Binary
Translator

T coll$§ﬂ°3€§ r
& J
exit

Manager

.
returnT l miss
Interpreter




/|

f,
aulation techniques

ap and emulate model
ardware assistance

PU VIRTUALIZATION



* From emulation to virtualization :

= While emulation techniques emulate guest on host, whose ISA
differ from guest, in virtualization techniques, guest and host have
the same ISA.
= Some problems in emulation will not exist in virtualization :
* No need to translate each binary instruction to host ISA.
* No need to worry about unmatched special register mapping.
= Some new problems didn’t exist in emulation exist now :
 Instruction privileges should be well-controlled.

. . . ues ues
 (Goal of virtualization : \ J (!

= Run or simulate all instructions W

of guest OS. \

Host physical hardware




- Ty
'..‘h." s..l.

 Virtualization requirements from Popek and Goldbéfg :

= Popek and Goldberg provide a set of sufficient conditions for a
computer architecture to efficiently support system virtualization.

= Popek and Goldberg provide guidelines for the design of virtualized
computer architectures.

* In Popek and Goldberg terminology, a VMM must present
all three properties :
= Equivalence (Same as real machine)
= Resource control (Totally control)
= Efficiency (Native execution)



e Modern CPU status is usually classified as several modes.

* In general, we conceptually divide them into two modes :
= Kernel mode (Ring 0)

e CPU may perform any operation allowed by its architecture, including any
instruction execution, 10 operation, area of memory access, and so on.

e Traditional OS kernel runs in Ring 1 mode.
= User mode (Ring 1 ~ 3)
e CPU can typically only execute a subset of those available instructions in
kernel mode.
* Traditional application runs in Ring 3 mode.

&y Most privileged




* By the classification of CPU modes, we divide instructions
into following types :

= Privileged instructions

e Those instructions that trap if the machine is in user mode and do not
trap if the machine is in kernel mode.

= Sensitive instructions

* Those instructions that interact with hardware, which include control-
sensitive and behavior-sensitive instructions.

= Innocuous instructions
e All other instructions.
= (ritical instructions
* Those sensitive but not privileged instructions.



ke
9 9 9
User Mode User Mode
~ /—\
Alklligee Privileged
Sensitive

Sensitive




 Whatis trap ? "
= When CPU is running in user mode, some internal or external
events, which need to be handled in kernel mode, take place.

* Then CPU will jump to hardware exception handler vector, and
execute system operations in kernel mode.

* Trap types:

= System Call
* Invoked by applications in user mode.
* For example, application ask OS for system 10.

= Hardware Interrupts
* Invoked by some hardware events in any mode.
* For example, hardware clock timer trigger event.

= Exception
* Invoked when unexpected error or system malfunction occur.
* For example, execute privilege instructions in user mode.



* [f we want CPU virtualization to be efficient, how Sh(;llld we |
implement the VMM ?

= We should make guest binaries run on CPU as fast as possible.

» Theoretically speaking, if we can run all guest binaries natively,
there will NO overhead at all.

= But we cannot let guest OS handle everything, VMM should be able
to control all hardware resources.

* Solution:
= Ring Compression

 Shift traditional OS from kernel mode (Ring 0) to user mode (Ring 1), and
run VMM in kernel mode.

 Then VMM will be able to intercept all trapping events.



* VMM virtualization paradigm (trap and emulate) :

1.

Let normal instructions of guest OS run directly on processor in
user mode.

When executing privileged instructions, hardware will make
processor trap into the VMM.

The VMM emulates the effect of the privileged instructions for the
guest OS and return to guest.

user-mode
Applications
Ring 3

Ring O
supervisor-mode
Kernel

Traps,interrupts System calls
and exceptions




 Traditional OS:

When an application
invokes a system call :

e CPU will trap to interrupt
handler vector in OS.

e CPU will switch to kernel
mode (Ring 0) and execute
OS instructions.

When hardware event:

e Hardware will interrupt CPU
execution, and jump to
interrupt handler in OS.

Application

Ring 3

Ring 2

Ring 1

Ring 0

Interrupt handler vector

Hardware Interrupt

Physical Hardwa




—T0

e VMM and Guest OS:

= System Call

e CPU will trap to interrupt
handler vector of VMM.

* VMM jump back into guest OS.

= Hardware Interrupt

e Hardware make CPU trap to
interrupt handler of VMM.

e VMM jump to corresponding
interrupt handler of guest OS.
= Privilege Instruction

* Running privilege instructions
in guest OS will be trapped to

VMM for instruction emulation. ..veceeeessssssssssscslerssssncenesarsscesessersnesnernn

e After emulation, VMM jump
back to guest OS.

Application

Ring 3

System Call

Ring 2

Guest OS

Interrupt handler vector |

Privilege instruction

Ring 1

Physical Hardwa

Emulation

Ring 0

Interrupt handler vector

Hardware Interrupt




* Steps of VMM switch different virtual mac

1. Timer Interrupt in running VM.
2. Context switch to VMM.
3. VMM saves state of running VM.
4. VMM determines next VM to execute.
5. VMM sets timer interrupt.
6. VMM restores state of next VM.
7. VMM sets PC to timer interrupt handler of next VM.
8. Next VM active. VMM VMM restores
determines next architected state
VM to bz VMM sets i for next VM
activate sets timer .
Timeri VMM saves interval and VMM sets PC to timer
Imerinterrupt, ., itocted state enables interrupt handler of OS
ocecurs of running VM interrupts in next VM

First VM Active

S S S i

VMM Active - Next VM Active




System State Management

VMM Memory
* Virtualizing system state : Registers value of VM 1
e
= VMM will hold the system states S
of all virtual machines in memory. 5
= When VMM context switch from =
one virtual machine to another
* Write the register values back to memory Registers value of VM 2
e
» Copy the register values of next guest OS e—
e
to CPU registers. o
R I 6B
—
Processor
; Registers value of VM 3
Copy register values T —
Processor Registers when context switch e A
| |
| o
- e
I —




Subset theorem :

= For any conventional third-generation computer, a VMM may be
constructed if the set of sensitive instructions for that computer
is a subset of the set of privileged instructions.

Recursive Emulation :

= A conventional third-generation computer is recursively
virtualizable if
 Itis virtualizable
VMM without any timing dependencies can be constructed for it.

Under this theorem, x86 architecture cannot be
virtualized directly. Other techniques are needed.



* How to virtualize unvirtualizable hardware :

= Para-virtualization
* Modify guest OS to skip the critical instructions.

* Implement some hyper-calls to trap guest OS to VMM.

= Binary translation
e Use emulation technique to make hardware virtualizable.
e Skip the critical instructions by means of these translations.

= Hardware assistance
* Modify or enhance ISA of hardware to provide virtualizable architecture.
e Reduce the complexity of VMM implementation.



Para-Virtualization

* Para-Virtualization implementation :

» |n para-virtualization technique, guest OS should be modified to
prevent invoking critical instructions.

= Instead of knowing nothing about hypervisor, guest OS will be aware
of the existence of VMM, and collaborate with VMM smoothly.

= VMM will provide the hyper-call interfaces, which will be the
communication channel between guest and host.

Guest OS Modified Guest OS

ADD R2 R1 0x00F4 ADD R2 R1 Ox00F4
MOV R1 R2 MOV R1 R2

<< Critical instruction >> << VMM Hyper-Call >>
MOV R3 R2 MOV R3 R2




* In emulation techniques :

= Binary translation module is used to optimize binary code
blocks, and translate binaries from guest ISA to host ISA.

* Invirtualization techniques :

= Binary translation module is used to skip or modify the guest
OS binary code blocks which include critical instructions.

= Translate those critical instructions into some privilege
instructions which will trap to VMM for further emulation.




 Static approach vs. Dynamic approach :

= Static binary translation

* The entire executable file is translated into an executable of the target
architecture.

* This is very difficult to do correctly, since not all the code can be
discovered by the translator.

= Dynamic binary translation

* Looks at a short sequence of code, typically on the order of a single basic
block, translates it and caches the resulting sequence.

e Code is only translated as it is discovered and when possible, branch
instructions are made to point to already translated and saved code.



Binary Translation

* Dynamic binary translation and optimization

= VMM can dynamically translate binary code and collect profiling
data for further optimization.

Binary
Translation

Ttrigger

Profiling
Data
Guest Binary Host Binary

B, i - PR | S
ative —»
Execute <€—— Dispatcher <— - -
I . .

Emulation

TCoIIect data



 Difficulties of binary translation :
= Self-modifying code

* If guest OS will modify its own binary code in runtime, binary translation
need to flush the responding code cache and retranslate the code block.

= Self-reference code

 If guest code need to reference(read) its own binary code in runtime,
VMM need to make it referring back to original guest binaries location.

= Real-time system
* For some timing critical guest OS, emulation environment will lose precise
timing, and this problem cannot be perfectly solved yet.

 Difficulty of para-virtualization :

= Guest OS modification

e User should at least has the source code of guest OS and modify its kernel;
otherwise, para-virtualization cannot be used.



/|

f,
aulation techniques

ap and emulate model
ardware assistance

PU VIRTUALIZATION



 Why are there so many problems and difficulties ?
= (ritical instructions do not trap in user mode.

= Even if we make those critical instructions trap, their semantic may
also be changed; which is not acceptable.

* In short, legacy processors were not designed for
virtualization purpose at the beginning.

= [f processors can be aware of the different behaviors between guest
and host, the VMM design will be more efficient and simple.



* Let's go back to trap model:

= Some trap types do not need the VMM involvement.

e For example, all system calls invoked by application in guest OS should be
caught by gust OS only. There is no need to trap to VMM and then
forward it back to guest OS, which will introduce context switch overhead.

= Some critical instructions should not be executed by guest OS.

* Although we make those critical instructions trap to VMM, VMM cannot
identify whether this trapping action is caused by the emulation purpose
or the real OS execution exception.

 Solution:
= We need to redefine the semantic of some instructions.
= We need to introduce new CPU control paradigm.



* In order to straighten those problems out, Intel introduces
one more operation mode of x86 architecture.
= VMX Root Operation (Root Mode)

e All instruction behaviors in this mode are no different to traditional ones.

* All legacy software can run in this mode correctly.
VMM should run in this mode and control all system resources.

= VMX Non-Root Operation (Non-Root Mode)
* All sensitive instruction behaviors in this mode are redefined.
e The sensitive instructions will trap to Root Mode.

e Guest OS should run in this mode and be fully virtualized through typical
“trap and emulation model”.



e VMM with VT-x: ) Application
Ring 3

= System Call

e CPU will directly trap to
interrupt handler vector
of guest OS.

Ring 2

» Hardware Interrupt

* Still, hardware events
need to be handled by
VMM first.

. SenSitive InStI‘UCtiOD R_ 0 = [ )2 Sensitive instruction
* Instead of trap all privilege Ing B e gt handler vector |

INStructions, ruNNING SUEST  wievevesassssssssarnsasassssssnsasafiarhosssasarasasansssnsasarasassns
OS in Non-root mode will b T

trap sensitive instruction Root Mode

only.

Ring 1

Non-Root Mode

- Interrupt handler vector

Physical Hardware




e VMM switch different virtual machines with Intel VT-x :
=  VMXON/VMXOFF
* These two instructions are used to turn on/off CPU Root Mode.

= VM Entry

e This is usually caused by the execution of VMLAUNCH/VMRESUME instructions,
which will switch CPU mode from Root Mode to Non-Root Mode.

= VM Exit

e This may be caused by many reasons, such as hardware interrupts or
sensitive instruction executions.

e Switch CPU mode from Non-Root Mode to Root Mode.

ues ues

L. / S

VM EXit VM Entry
VM Entry VM EXit

VMXON > VMXOFF




7.".‘, b

» Intel introduces a more efficient hardware approach for
register switching, VMCS (Virtual Machine Control Structure) :

= State Area
e Store host OS system state when VM-Entry.
e Store guest OS system state when VM-Exit.

= Control Area
e Control instruction behaviors in Non-Root Mode.
e Control VM-Entry and VM-Exit process.

= Exit Information
* Provide the VM-Exit reason and some hardware information.

 Whenever VM Entry or VM Exit occur, CPU will automatically
read or write corresponding information into VMCS.



[ —
. Syste

* Binding virtual machine to virtual CPU

= VCPU (Virtual CPU) contains two parts
* VMCS maintains virtual system states, which is approached by hardware.

* Non-VMCS maintains other non-essential system information, which is
approached by software.

= VMM needs to handle Non-VMCS part.

 Vepucontext ' \
Physical CPU

VMCS Context

Non-VMCS Context

v

VMCS Context

m— Hardware approach
— Software approach

Non-VMCS Context




* Emulation technique
= Interpretation and binary translation approaches
= System state mapping and performance issue
* Translation chaining, Dynamic binary optimization
 Virtualization technique
= Modern CPU architecture
* Trap and emulation model
= (ritical instruction issue
e Para-virtualization, Dynamic binary translation
* Hardware assistance

= Intel VT-x approach
e Root Mode & Non-Root Mode






Virtual machine venders:

= VMware

* The company was founded in 1998 and is based in Palo Alto, California.
The company is majority owned by EMC Corporation.

* Implement both type-1 and type-2 VM.
= Xen
* First developed in University of Cambridge Computer Laboratory.

e As of 2010 the Xen community develops and maintains Xen as free
software, licensed under the GNU General Public License (GPLv2).

* Implement para-virtualization.

* Virtual machine project:
= KVM ( Kernel-based Virtual Machine )

e A Linux kernel virtualization infrastructure.
e As of 2010, KVM supports native virtualization using Intel VT-x or AMD-V.



* Basic properties :
= Separate OS and hardware -
break hardware dependencies

= OS and Application as single
unit by encapsulation

= Strong fault and security
isolation

= Standard, HW independent
environments can be
provisioned anywhere

= Flexibility to chose the right OS
for the right application




"'i,.'

Infrastructure Desktop Business Software
Optimization Management Continuity Lifecycle

Management "'
Automation "'

multiple mixed teams

Resource Mgt  Availability Mobility Security
Distributed ﬁ
Virtualization e

1

Virtualization
Platforms




~_~w.

VMware GSX Server

*= Run multiple servers on your server
= Hosted Architecture

= Available for Linux hosts and Windows hosts

e VMware ESX Server

= (Quality of Service
= High-performance [/0O
= Host-less Architecture ( bare-metal )



VMware GSX Server Architecture

Host Mode VMM Mode

VMware, acting as an The VMware Virtual
application, uses the host machine monitor allows
to access other devices each guest OS to directly
such as the hard disk, access the processor
floppy, or network card (direct execution)

Guest OS Applications

Guest Operating System

Host OS Apps Ware App Virtual Machine

m’— Virtual IMachine Monitor
|

L4 L4

NIC Disks PCHardware wemory  CPU

VMware achieves
both near-native
execution speed
and broad device
support by
transparently
switching
between Host
Mode and VMM
Mode.



VMware ESX Server Architecture

VMkernel

x86 SMP

Hardware

Guest Guest Guest Guest

VMM VMM VMM VMM

Scheduler || Memory | SCS| Ethernet
Mgmt Driver Driver

Console
0OS




Basic properties :
= Para-virtualization

* Achieve high performance even on its host architecture (x86) which has a
reputation for non-cooperation with traditional virtualization techniques.

= Hardware assisted virtualization

e Both Intel and AMD have contributed modifications to Xen to support
their respective Intel VT-x and AMD-V architecture extensions.

= Live migration

e The LAN iteratively copies the memory of the virtual machine to the
destination without stopping its execution.

* Implement system:
= Novell's SUSE Linux Enterprise 10
= Red Hat's RHEL 5
= Sun Microsystems' Solaris



» Xen extensions to x86 arch
= Like x86, but Xen invoked for privileged instructions
= Avoids binary rewriting
= Minimize number of privilege transitions into Xen
= Modifications relatively simple and self-contained

* Modify kernel to understand virtualized environment
= Wall-clock time vs. virtual processor time
e Desire both types of alarm timer

= Expose real resource availability
e Enables OS to optimize its own behaviour



rc

~ Original Xen A

-

VMO VM1 VM2 VM3

Back-Ends

Native
Device Front-End Front-End Front-End

Drivers Device Drivers Device Drivers Device Drivers

Xen Virtual Machine Monitor

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)




 Hardware assistance :

= CPU provides VMExit for certain privileged instructions
= Extend page tables used to virtualize memory

 Xen features:
= Enable Guest OS to be run without modification
* For example, legacy Linux and Windows

= Provide simple platform emulation
* BIOS, apic, iopaic, rtc, Net (pcnet32), IDE emulation

» [Install para-virtualized drivers after booting for high-performance 10

= Possibility for CPU and memory para-virtualization
* Non-invasive hypervisor hints from OS



Domain 0

Linux xen64

=
3'08
< 2 3
m g =
e
2 <

Native
Device
Drivers

Domain N

Native
Device
Drivers

Guest VM (VM

(32-bit) (64-bit)

Unmodified OS Unmodified OS

lenuiA 34

Virtual Platform

| Virtual Platform

1O Emulation 1O Emulation

Control Interface

Scheduler

Event Channel Hypercalls

Processor

Xen Hypervisor

I/0: PIT, APIC, PIC, IOAPIC

3D




* KVM ( Kernel-based Virtual Machine)

* Linux host OS
* The kernel component of KVM is included in mainline Linux, as of 2.6.20.

= Full-virtualization

 KVM is a full virtualization solution for Linux on x86 hardware containing
virtualization extensions (Intel VT or AMD-V).

e Using KVM, one can run multiple virtual machines running unmodified
Linux or Windows images.

= [O device model in KVM :
* KVM requires a modified QEMU for 10 virtualization framework.
* Improve IO performance by virtio para-virtualization framework.



* It consists of a loadable kernel module
= kvm.ko
e provides the core virtualization infrastructure

= kvm-intel.ko / kvm-amd.ko
e processor specific modules

KVM + QEMU Virtualization

Application Application

GuestOS 1 GuestO0S 2 g
Application

B —
Application

Hosted OS (Linux)

Application .

Physical Hardware




* Original approach with full-virtualization

= Guest hardware accesses are
intercepted by KVM

= QEMU emulates hardware behavior
of common devices
* RTL 8139
* PIlIX4 IDE
* Cirrus Logic VGA




* New approach with para-virtualization

Linux guest

Front-end drivers

_,..-"' virtio ~ .
Back-and drivers Back-end drivers

KVM Device emulation Device emulation Iguest
(Linux hypervisor) (Linux hypervisor)

Hardware




e virtio architecture

Sdriversfeirtiofvirtio-pol e

JSdrivers/net/virtio-net.c driversfvirtiofvircio-bal loon. e
virtio-
virtio-blk virfio-net virtio-pel virtio-balloon .
JAdrivers Block/virtie-blk. e \ / Cfdrivers frirtiafvirtio-console.c
virtio STimeddriversfvirtiofeirtio.

Tmnﬁm{t SAHnuefdelversSvirtiefvirtlooring. o

virtio
back-end
drivers




|

e migration

oud properties

)THER ISSUES



Essential technique of cloud properties implementation

= Live migration of virtual machines

* Migrate a virtual machine from one physical machine to another in the
run time with a small amount of performance down grade.

 Virtualization enabled cloud properties :
= Scalability
e Virtual machine system automatic scale up
= Availability
* Fault tolerance of hardware and software
= Manageability
e Automatic physical to virtual system transformation

= Performance
e Dynamically virtual machine level load balancing



* Pre-assumption :

= We assume that all storage resources are
separated from computing resources.

= Storage devices of VMs are attached from
network :
* NAS: NFS, CIFS
e SAN: Fibre Channel
* jSCSI, network block device
* drdb network RAID

= Require high quality network connection
e Common L2 network (LAN)
* L3 re-routing




* Challenges of live migration :
= VMs have lots of state in memory

Some VMs have soft real-time
requirements :
* For examples, web servers,

databases and game servers, ...etc.

* Need to minimize down-time

* Relocation strategy :

U1 & WD

Pre-migration process
Reservation process
[terative pre-copy
Stop and copy
Commitment

Pre-migration process

7
A\

I(l

Reservation process

7
A\

Iterative pre-copy

7
\,

Stop and copy

A -

Commitment

I(ﬂ

7
5\




Pre-migration process |

. v

.

Reservation process

¥

Iterative pre-copy

o
g

Commitment

e Activate on host B
* VM state on host A released




Live Migration Technique

* Live migration process :

Pre-copy migration : Round 1

e

gu

Host A Host B



e Live ation Tec

* Live migration process :

Pre-copy migration : Round 2

[ ] [ ]
g | H
_
o
= =

Host A

Host B



* Live migration process :

Stop and copy : Final Round

Host A



* Scalability implement by
VMware:

= VMware VMotion, makes it
possible to move Virtual
Machines, without interrupting
the applications running inside.

= Dynamically scale up virtual
machine system among
physical servers.




* Fault tolerance system :

= VMware makes all Servers
and Applications protected
against component and
complete system failure.

= When system failure occurs,
virtual machines will be
automatically restarted on
other physical servers.




* Disaster recovery :

= VMware Site Recovery Manager
enables an easy transition from a
production site to a Disaster
Recovery site.

= Easy Execution for real Disaster
= Easy Testing for good night sleep




Application protection against hardware
failures, with NO down time that is Application
and Operating System Independent.



aeaqap

* Provide physical to virtual
translation :

= Consolidation Management
with the VMware Infrastructure
software will automate the
migrajs m physical to
Vi es.




* Dynamic load balancing :

= VMware Distributed Resource
Scheduler automatically
balances the Workloads
according to set limits and
guarantees.

= Removing the need to predict
resource assignment.




* Optimize network access :

= VMware and Cisco are
collaborating to enhance
workload mobility and
simpler management with
virtualization-aware
networks.

I
cISCO Nexus 1000V




eCl

 Enhance virtual machine
security protection :

= The Application vService
VMSafe allows security
vendors to add superior
security solutions inside the
VMware Infrastructure.

5 s’"““““‘ Liecipoint o McAfee

Y ok

TREND oo =
M1 CRDO




* Server virtualization technique : ;
. . . Virtual Virtual Virtual
* Ring compression, Intel VT-x, ...etc |

= Memory virtualization Xen, KVM, VMWare
* Shadow page table, Intel EPT, ...etc

X86 , ARM, MIPS

= JO virtualization
* Device model, Intel VT-d, PCle SR-IQV, ...etc CPU + Memory + 10 Device

* Ecosystem:
= VMware implements both type-1 & type-2 virtualization
= Xen implements both para and full virtualization
= KVM implements in Linux mainstream kernel

* Cloud properties :
= Enabled by live migration technique
= Scalability, Availability, Manageability and Performance



e Books:

» James E. Smith & Ravi Nair, Virtual Machines, Elsevier Inc., 2005

e Web resources:

= Xen project http://www.xen.org

= KVM project http://www.linux-kvm.org/page/Main_Page

= [BM VirtlO survey https://www.ibm.com/developerworks/linux/library/I-virtio
= PCI-SIG IO virtualization specification http://www.pcisig.com/specifications/iov

* Other resources :
= Lecture slides of “Virtual Machine” course (5200) in NCTU
» Vmware Overview Openline presentation slides http://www.openline.nl

= Xen presentation http://www.cl.cam.ac.uk/research/srg/netos/papers/2006-xen-
fosdem.ppt



