
CS 4740- Cloud Computing
Programming Assignment 4

Goal of this PA

• Gain hand-on experience with the Docker

• Understand the terminology of Docker

• Know how to create image and create container based on image

• Know how to use container service on Amazon AWS

• Know how to build multi-container environment

Prerequisite

• Do NOT use Windows OS for this PA. If you have Windows PC only,
install VirtualBox and create a VM with Linux (e.g., Ubuntu 14.04)
installed (20GB disk size and 3GB memory are enough).

Virtualbox: https://www.virtualbox.org/wiki/Downloads

Ubuntu : https://ubuntu.com/download/desktop

mage: Sign up for an account in https://hub.docker.com/

- Also create an AWS account if you have not created one.

https://www.virtualbox.org/wiki/Downloads
https://ubuntu.com/download/desktop
https://hub.docker.com/

Illustration of key steps VM in Virtual box:
Recommended size of the virtual disk

Choose fixed size disk image
after choosing VDI disk type

Steps

• Follow the tutorial given in:

https://docker-curriculum.com/

Read through all text and finish all steps 1.1-3.4 (inclusive). Please see
file “P4- TutorialIndex.docx” for the step indices.

Also check the notes in the tutorial document.

https://docker-curriculum.com/

Steps 1.1 How to create a
container

Step 1.0- Installing Docker

• Install docker using repository

- Mac: https://docs.docker.com/docker-for-mac/install/

- Linux: https://docs.docker.com/install/linux/docker-ce/ubuntu/

After installation commands to execute:

docker pull busybox

docker images

docker run busybox echo "hello from busybox“

-- Also other basic command(s) from the tutorial

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Deliverable 1

• Step 1.1

Command: docker ps –a

Note: if you get an error like permission denied, execute all the
commands using sudo

Steps 2.0- WEBAPPS WITH DOCKER

• Images - The blueprints of applications which
form the basis of containers.

• Containers - Created from Docker images and run
the actual application.

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.1:

i) docker run --rm prakhar1989/static-site

ii) Ctrl+C to stop the container.

iii)docker run -d -P --name static-site
prakhar1989/static-site

iv)docker port static-site

v) open http://localhost:32769 in your browser (Deliverable 2).

vi) You can also run

docker run -p 8888:80 prakhar1989/static-site

For specifying a custom port (8888).

http://localhost:32769/

Deliverable 2

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.2:

Command: docker images (Deliverable 3)

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.3 and 2.4:
i) git clone https://github.com/prakhar1989/docker-

curriculum.git

ii)cd docker-curriculum/flask-app

iii) The Dockerfile is already in the flask-app directory, you do not need to
do anything

iv)docker build -t yourusername/catnip .

Note: Don’t forget the period sign. Yourusername refers to docker hub
username in this and all future references
v) docker run -p 8888:5000 yourusername/catnip

vi) open http://localhost:8888 in your browser (Deliverable 4).

https://github.com/prakhar1989/docker-curriculum.git

Deliverable 4

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.5:

i) docker login

ii) Username and password from your docker hub account.

iii)docker push yourusername/catnip

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.5 (AWS Beanstalk)

i) Login to your AWS console.

ii) Click to Elastic Beanstalk
console link

iii) Click on "Create New
Application" in the top right

iv) Give your app a memorable (but
unique) name and provide an
(optional) description

https://console.aws.amazon.com/elasticbeanstalk

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.5
v) In the New Environment screen,
create a new environment and
choose the Web Server
Environment.
vi) Fill in the environment
information by choosing a domain.
This URL is what you'll share with
your friends so make sure it's easy to
remember.
vii) Under base configuration
section. Choose Docker from
the predefined platform.

Step 2.0- WEBAPPS WITH DOCKER

• Sub-steps for 2.5 (AWS Beanstalk)

viii) Now we need to upload our application code. But since our
application is packaged in a Docker container, we just need to tell EB
about our container. Open the Dockerrun.aws.json file located in the
flask-app folder and edit the Name of the image to your image's name
(change the username with docker hub username).

ix) Now click on "Create environment". The final screen that you see
will have a few spinners indicating that your environment is being set
up. It typically takes around 5 minutes for the first-time setup.

Deliverable 5

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

Elasticsearch for searching
App backend server (host

website)

SF Food Trucks App

Container Container

Network

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

• Sub-steps 3.1

i) git clone https://github.com/prakhar1989/FoodTrucks

ii)cd FoodTrucks (All the commands after this are run inside this directory)

iii)docker search elasticsearch

iv)docker pull
docker.elastic.co/elasticsearch/elasticsearch:6.3.2

v) docker run -d --name es -p 9200:9200 -p 9300:9300 -e
"discovery.type=single-node"
docker.elastic.co/elasticsearch/elasticsearch:6.3.2

vi)docker build -t yourusername/foodtrucks-web .

Note: Step vi fails because of not being able to connect to elastic search.

https://github.com/prakhar1989/FoodTrucks

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

• Sub-steps 3.2

vii) docker container stop es

viii) docker container rm es

ix) docker build -t yourusername/foodtrucks-web .

x) docker network create foodtrucks-net

xi) docker run -d --name es --net foodtrucks-net -p
9200:9200 -p 9300:9300 -e "discovery.type=single-node"
docker.elastic.co/elasticsearch/elasticsearch:6.3.2

xii) docker run -d --net foodtrucks-net -p 5000:5000 --name
foodtrucks-web yourusername/foodtrucks-web

Note: you can use the docker network inspect foodtrucks-net to check whether
elastic search container is connected to the desired bridge

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

• Sub-steps 3.3:

If you're running Mac, Docker Compose is already installed as it comes
in the Docker Toolbox. Linux users can easily get their hands on Docker
Compose by following the instructions on the docs. Since Compose is
written in Python, you can also simply do pip install docker-
compose

Then check the version with the following command

docker-compose --version

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

• Sub-steps 3.3:

i) docker stop es foodtrucks-web

ii)docker rm es foodtrucks-web

iii)docker-compose up (Deliverable 6– get the screenshot)

iv)docker-compose down -v

Deliverable 6

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

Sub-step 3.4:

i) Install Amazon ECS CLI Link

Mac: sudo curl -o /usr/local/bin/ecs-cli https://amazon-ecs-
cli.s3.amazonaws.com/ecs-cli-darwin-amd64-latest

Linux: sudo curl -o /usr/local/bin/ecs-cli https://amazon-ecs-
cli.s3.amazonaws.com/ecs-cli-linux-amd64-latest

ii) Verify

Mac: curl -s https://amazon-ecs-cli.s3.amazonaws.com/ecs-cli-
darwin-amd64-latest.md5 && md5 -q /usr/local/bin/ecs-cli

Linux: echo "$(curl -s https://amazon-ecs-
cli.s3.amazonaws.com/ecs-cli-linux-amd64-latest.md5)
/usr/local/bin/ecs-cli" | md5sum -c -

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_installation.html
https://amazon-ecs-cli.s3.amazonaws.com/ecs-cli-darwin-amd64-latest
https://amazon-ecs-cli.s3.amazonaws.com/ecs-cli-linux-amd64-latest

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

Sub-step 3.4:

iii) get a keypair which we'll be using
to log into the instances. Head over
to your EC2 Console and create a
new keypair. Download the keypair
and store it in a safe location.
Another thing to note before you
move away from this screen is the
region name. In my case, I have
named my key - ecs and set my
region as us-east-1. This is what I'll
assume for the rest of this
walkthrough.

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#KeyPairs:sort=keyName

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

Step 3.4:

iv) Configure Link:

ecs-cli configure profile --profile-name

profile_name --access-key $AWS_ACCESS_KEY_ID --

secret-key $AWS_SECRET_ACCESS_KEY

Profile_name : your desired profile name

$AWS_ACCESS_KEY_ID and $AWS_SECRET_ACCESS_KEY: access them
from your AWS security credentials (as in PA3)

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_Configuration.html

Step 3.0- MULTI-CONTAINER ENVIRONMENTS

v) ecs-cli configure --region us-east-1 --cluster
foodtrucks

vi) ecs-cli up --keypair ecs --capability-iam --

size 2 --instance-type t2.micro

vii) docker push yourusername/foodtrucks-web

viii) ecs-cli compose --file aws-compose.yml up

ix) ecs-cli ps

Type the ip in the browser and observe the output (screenshot in the
next slide)

Deliverable 7 (Either one of them is ok)

This can be obtained from
Services Elastic Container
Service --> FoodTrucks Tasks

• Remember to terminate all the services.

- Delete the cluster after getting the screenshot in the previous slide.

- Go to elastic beanstalk and delete the application.

- Also terminate your running EC2 instances.

Questions?

