Cloud Computing

PaaS Techniques
File System

Overview
= Hadoop & Google

e PaaS Techniques
= File System
* GFS, HDFS

= Programming Model
 MapReduce, Pregel

= Storage System for Structured Data
* Bigtable, Hbase

 Hadoop is

L : Cloud Applicati

platform i A

= A software framework that
. . MapReduce
lets one easily write and run
applications that process ! !
vast amounts of data

Hadoop Distributed
" |nspired from published File System (HDFS)

papers by Google

A Cluster of Machines

* Google published the designs of web-search
engine
= SOSP 2003
* The Google File System

= OSDI 2004

* MapReduce : Simplified Data Processing on Large Cluster

= OSDI 2006
* Bigtable: A Distributed Storage System for Structured Data

Google

Google vs. Hadoop

i Develop Group Google Apache |
i Sponsor Google ~ Yahoo, Amazon i
i Resource open document open source !
i File System GFS HDFS i
i | Hadoop
i Programming Model MapReduce :
R __MapReduce
| Storage System i
: 22 Bigtable Hbase :
i (for structured data) i
i Search Engine Google Nutch i
i oS Linux Linux / GPL |

* Overview
= Hadoop & Google

e PaaS Techniques
= File System
* GFS, HDFS

" Programming Model
* MapReduce, Pregel

= Storage System for Structured Data
* Bigtable, Hbase

A
e System Overview

stributed File Systems (DFS)
adoop Distributed File Systems (HDFS)

ILE SYSTEM

System that permanently stores data

To store data in units called “files” on disks and other
media

Files are managed by the Operating System

The part of the Operating System that deal with files
is known as the “File System”

= A file is a collection of disk blocks

= File System maps file names and offsets to disk blocks

The set of valid paths form the “namespace” of the
file system.

e User data itself is the bulk of the file system's

.y “

contents
* Also includes meta-data on a volume-wide and per-
file basis:
e 1
* Available space * Name
* Formatting info. * Owner

e Character set Modification data

* Namespace
= Physical mapping
= |ogical volume

* Consistency

= \What to do when more than one user reads/writes on the
same file?

* Security

= Who can do what to a file?

= Authentication/Access Control List (ACL)
Reliability

= Can files not be damaged at power outage or other
hardware failures?

Namespace
= root directory “/”, followed by directories and files.

Consistency

= “sequential consistency”, newly written data are
immediately visible to open reads

Security
= uid/gid, mode of files
= kerberos: tickets
Reliability
= journaling, snapshot

* Namespace

= Physical mapping
* adirectory and all of its subdirectories are stored on the same
physical media
— /mnt/cdrom
— /mnt/disk1, /mnt/disk2, ... when you have multiple disks

= |ogical volume

* alogical namespace that can contain multiple physical media or a
partition of a physical media

— still mounted like /mnt/voll
— dynamical resizing by adding/removing disks without reboot
— splitting/merging volumes as long as no data spans the split

* Journaling

= Changes to the filesystem is logged in a journal before it is
committed
e useful if an atomic action needs two or more writes

— e.g., appending to a file (update metadata + allocate space +
write the data)

e can play back a journal to recover data quickly in case of hardware
failure.

= What to log?

e changes to file content: heavy overhead
* changes to metadata: fast, but data corruption may occur

=" Implementations: xfs3, ReiserFS, IBM's JFS, etc.

* Snapshot

= A snapshot = a copy of a set of files and directories at a
point in time
* read-only snapshots, read-write snapshots

e usually done by the filesystem itself, sometimes by LVMs

* backing up data can be done on a read-only snapshot without
worrying about consistency

= Copy-on-write is a simple and fast way to create snapshots
e current data is the snapshot

* arequest to write to a file creates a new copy, and work from
there afterwards

= |Implementation: UFS, Sun's ZFS, etc.

A
e System Overview

stributed File Systems (DFS)
adoop Distributed File Systems (HDFS)

ILE SYSTEM

Allows access to files from multiple hosts sharing via
a computer network

Must support concurrency

= Make varying guarantees about locking, who “wins” with
concurrent writes, etc...

= Must gracefully handle dropped connections

May include facilities for transparent replication and
fault tolerance

Different implementations sit in different places on
complexity/feature scale

e Multiple users want to share files

* The data may be much larger than the storage space
of a computer

* A user wants to access his/her data from different
machines at different geographic locations

* Users want a storage system
= Backup
= Management

Note that a “user” of a DFS may actually be a “program”

Ty
-

* Different systems have different designs and
behaviors on the following features

= |nterface
* file system, block 1/O, custom made

= Security

e various authentication/authorization schemes

= Reliability (fault-tolerance)

* continue to function when some hardware fail (disks, nodes,
power, etc.)

= Namespace (virtualization)

* provide logical namespace that can span across physical
boundaries

= Consistency
 all clients get the same data all the time
* related to locking, caching, and synchronization

= Parallel
* multiple clients can have access to multiple disks at the same time
= Scope

* |ocal area network vs. wide area network

‘ HIOES
DFS

OW ABOUT HADOOP

Overview
* Architecture
* Implementation

Other Issue

 Hadoop Distributed File

= Reference from Google File i 4

System
= A scalable distributed file
system for large data analysis

= Based on commodity

hardware with high fault- Hadoop Distributed
tolerance File System (HDFS)

" The primary storage used by
Hadoop applications

A Cluster of Machines

e Large data sets and files
= Support Petabytes size

* Heterogeneous
= Could be deployed on different hardware

e Streaming data access
= Batch processing rather than interactive user access
= Provide high aggregate data bandwidth

* Fault-Tolerance
= The norm rather than exception
= Automatic recovery or report failure

* Coherency Model
= Write-once-read-many
= This assumption simplifies coherency

e Data Locality
= Move compute to data

Overview
* Architecture
* Implementation

Other Issue

Metadata (Name, replicas, ...):
Metadatg,gpg’{ Namenode /home/foo/data, 3, ...
Block ops
Read Datanodes Datanodes

mm| |B H W]
[] = Blocks
- y
%
Rack 1 Rack 2

HDFS Architecture

e Each HDFS cluster has one Namenode

* Manage the file system namespace
* Regulate access to files by clients
* Execute file system namespace operations

* Maintain a rackid-to-DataNode map and tries to
place replicas across racks

One per node in the cluster

Manage storage attached to the nodes that they run
on

Serve read and write requests from the file system’s
clients

Perform block creation, deletion, and replication

* Traditional hierarchical file organization

* Does not support hard links or soft links

* Change to the file system namespace or its
properties is recorded by the Namenode

Overview
e Architecture
* Implementation

Other Issue

* Blocks of a file are replicated for fault tolerance

* The block size and replication factor are configurable
per file

* Namenode makes all decisions regarding replication
of blocks
= Heartbeat: Datanode is functioning properly
= Blockreport: a list of all blocks on a Datanode

Namenode (Filename, numReplicas, block-ids, ..

/users/sameerp/data/part-0
/users/sameerp/data/part-1, r:3, {2, 4 5}

)

Datanodes

@ = | =

—

® e

* Rack-aware replica placement policy
= data reliability
= availability
= network bandwidth utilization

* To validate it on production systems
= |earn more about its behavior
= build a foundation to test
= research more sophisticated policies

Screenshot

Number of Replicas:2

hadoop@buntu: /tmp/hadoop-hadoop/dfs/data/current$ 11 -h [root@locathost current]# 11 -h

mf tntal 7 7MW

m“ﬁf 192 -rw-rw-r-- 1 hadoop hadoop 1.4K Aug 16:46 blk_1434033524064351855
-xr-x 2 hadoop hadoop 4.0K 2010-08-12 16:47 ./ T eIt e S 095524 05435185521056 . neta
FXrX 5 hadoop hadoop 4,0 2010-08-11 17:46 ../ :ix:ix:::: hadoop hadoop 19K Aug 16:47 blk_-2130699322832305290

r--r-- 1 hadoop hadoop 22K 2010-08-12 16:38 blk_1339320897918224795 WA
r--r--_1 hadnon_hadoon 179 2010-AR-12 1A:38 hlk _1339320897918224795_ 1055 .neta STV rWer--

r-- 1 hadoop hacloop 14K 2010-08-12 16:46 b1k 1434933524064351855 S

-1 hadoop hadoop 19 2010-08-12 16:46 blk_1434033524064351855 1056, neta e
-- 1 hadoop hadoop 19K 2010-08-12 16:46 hlk_-2130699322832305290 Srere e
r-- 1 hadoop hadoop 159 2010-08-12 16:46 blk_-2130699322832305290_1056.neta :Lx:sz.::
r-- 1 hadoop hadoop 4 2010-08-11 17:50 blk_-3648396202343768262 ST PW-r- -

-+ 1 hadoop hadoop 11 2010-08-11 17:50 hlk_-3648396202343768262 1022.meta e

“IW-rW-r--

r
r
r hadoop hadoop 159 Aug 16:47 blk_-2130699322832305290_1056.meta
r hadoop hadoop 385K Aug 17:47 blk_-2153151756941551437
r hadoop hadoop 3.1K Aug 17:47 blk_-2153151756941551437_1021.meta
f hadoop hadoop 1.4M Aug 17:47 blk_-3530601104308258899
f hadoop hadoop 11K Aug 17:47 blk_-3530601104308258899_1020.meta
f hadoop hadoop 266 Aug 16:16 blk_-3964702335439094289
f hadoop hadoop 11 Aug 16:16 blk_-3964702335439094289 1047 .meta
f hadoop hadoop 270 Aug 16:15 blk_-412715259689855069
f hadoop hadoop 11 Aug 16:15 blk_-412715259689855069_1045.meta
f hadoop hadoop 252 Aug 16:16 blk_4502120706448492568
f hadoop hadoop 11 Aug 16:16 blk_4502120706448492568_1046.meta
) f hadoop hadoop 1.6M Aug 17:47 blk_-4786351927176103133
r-- 1 hadoop hadoop 270 2010-08-12 16:15 hlk_-412715259689855069 -rw-rw-r-- 1 hadoop hadoop 13K Aug 11 17:47 blk_-4786351927176103133_1018.meta
r-- 1 hadoop hadoop 11 2010-08-12 16:15 blk_-412715259689855069_1045.meta -rv-rw-r-- 1 hadoop hadoop 659K Aug 11 17:47 blk_5009733536760461414
- - -rw-rw-r-- 1 hadoop hadoop 5.2K Aug 17:47 blk_5009733536760461414 1016.meta
f hadoop hadoop 336K Aug 17:47 blk_-6948451480699326814
f hadoop hadoop 2.7K Aug 17:47 blk_-6948451480699326814_1019.meta
f hadoop hadoop 1.9M Aug 17:47 blk_-7511688267480827381
f hadoop hadoop 15K Aug 17:47 blk_-7511688267480827381_1017 .meta
f hadoop hadoop 17K Aug 16:09 blk_-8974169280347947717
f hadoop hadoop 139 Aug 16:09 blk_-8974169280347947717_1039.meta
f hadoop hadoop 17K Aug 16:10 blk_-9170609306520421532
f hadoop hadoop 139 Aug 16:10 blk_-9170609306520421532_1044.meta
f hadoop hadoop 1.3K Aug 16:17 b1lk_961116239961228894
f hadoop hadoop 19 Aug 16:17 b1lk_961116239961228894_1048.meta
f hadoop hadoop 1.3M Aug 16:38 blk_99424525126878213
f hadoop hadoop 11K Aug 16:38 blk_99424525126878213_1055.meta

r-- 1 hadoop hadoop 183 2010-08-12 16:28 blk 6434768955339204249 1054.meta - PW- T
- 1 hadoop hadoop 17K 2010-08-12 16:18 hlk_8302896404924163137 ST

“IW-rW-r--

r-- 1 hadoop hadoop 139 2010-08-12 16:18 blk_8302896404924163137_1053.meta W T -
r-- 1 hadoop hadoop 17K 2010-08-12 16:09 blk_-8974169280347947717 ST

“IW-rW-r--

-r-- 1 hadoop hadoop 139 2010-08-12 16:09 blk -8974169280347947717 1039.meta e P
r-- 1 hadoop hadoop 17K 2010-08-12 16:09 hlk_-9170609306520421532 “rW-PW-r--
r--r-- 1 hadoop hadoop 139 2010-08-12 16:09 blk_-9170609306520421532_1044.neta AR

W= rW-r--

r-- 1 hadoop hadoop 2.8K 2010-08-12 17:34 dncp_block verification.log.curr VP

f

i

i

i

i

i

i

i
_
r--r-- 1 hadoop hadoop 22K 2010-08-12 16:28 hlk_6434768955339204249 I
ol

i

i

i

i

i

i

i

* Data Corrupt
= Checked with CRC32
= Replace corrupt block with replication one

* Network Fault & Datanode Fault
= Datanode sends heartbeat to Namenode

* Namenode Fault
= FSImage — core file system mapping image
= Editlog — transaction log
= Multiple backups of FSImage and Editlog
= Manually recovery while Namenode Fault

CRC: Cyclical Redundancy Check

* Coherency model of files
= Namenode handles the operation of write, read and delete.

* Large Data Set and Performance
= The default block size is 64MB

= Bigger block size will enhance read performance

= Single file stored on HDFS might be larger than single
physical disk of Datanode

= Fully distributed blocks increase throughput of reading

Namenode JobTracker
file1 (1,3 Map tasks TaskTracker
[file2 E2’4’)5) } [Reduce tasks } .

ask for task

Block 1

@Gl Bl igp¥ = =

N\
N

Overview
e Architecture
* Implementation

Other Issue

* |nefficiency of resource utilization
= Significantly smaller than the HDFS block size (64MB)

* File, directory and block in HDFS is represented as an
object in the namenode’s memory, each of which
occupies 150 bytes

 HDFS is not geared up to efficiently accessing small
files

= Designed for streaming access of large files

 Hadoop Archives (HAR)

" |Introduced to alleviate the problem of lots of files putting
pressure on the namenode’s memory

= Building a layered filesystem on top of HDFS

HAR File Layout

Master index | |

Index

File File File

I File '

Data

Sequence Files

= Use the filename as the key and the file contents as the
value

SequenceFile File Layout

Data Key Value | Key | Value Key Value Key Value

MapFile File Layout

Index Key Key

Data Key Value | Key | Value Key Value Key Value

https://blog.cloudera.com/blog/2009/02/the-small-files-problem/

Scalability

= Provide scale-out storage capability of handling very large
amounts of data

Availability

= Provide the ability of failure tolerance such that data would not
lose on machine or disk fail

 Manageability

= Provide mechanism for the system to automatically monitor
itself and manage the massive data transparently for users

* Performance
= High sustained bandwidth is more important than low latency

S. GHEMAWAT, H. GOBIOFF, and S.-T. LEUNG, “The
Google file system,” In Proc. of the 19th ACM SOSP
(Dec. 2003)

Hadoop.

= http://hadoop.apache.org/

NCHC Cloud Computing Research Group.
= http://trac.nchc.org.tw/cloud

NTU course- Cloud Computing and Mobile Platforms.
= http://ntucsiecloud98.appspot.com/course_information

http://hadoop.apache.org/
http://trac.nchc.org.tw/cloud
http://ntucsiecloud98.appspot.com/course_information

