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Motivation 

How to locate a data item in a dynamic peer-to-peer system? 

  Lookup is the key problem 

Internet 

Publisher 
Key=“LetItBe” 

Value=MP3 data 

Lookup(“LetItBe”) 

N1 

N2 N3 

N5 N4 
Client ? 



Centralized Solution 

  Requires O(M) state 

   

Internet 

Publisher 
Key=“LetItBe” 

Value=MP3 data 

Lookup(“LetItBe”) 

N1 

N2 N3 

N5 N4 
Client 

DB 

 Central server (Napster) 



Distributed Solution (1) 

 Worst case O(N) messages per lookup 

Internet 

Publisher 
Key=“LetItBe” 

Value=MP3 data 

Lookup(“LetItBe”) 

N1 

N2 N3 

N5 N4 
Client 

Flooding (Gnutella, Morpheus, etc.) 



Distributed Solution (2) 

Routed messages (Freenet, Tapestry, Chord, CAN, etc.) 

Internet 

Publisher 
Key=“LetItBe” 

Value=MP3 data 

Lookup(“LetItBe”) 

N1 

N2 N3 

N5 N4 
Client 

Only exact matches 



Introduction 

• Chord  provides peer-to-peer hash lookup service: 
  Lookup(key)  IP address 

• Features: 
  Simplicity 

  provable correctness  
  provable performance 
 

• How does Chord distribute files? 
• How does Chord build routing tables? 
• How does Chord locate a node? 
• How does Chord maintain routing tables?  
• How does Chord cope with changes in membership? 
 



System Mode 

• Load balance 

 Chord acts a distributed hash function 

• Decentralization: fully distributed 

• Scalability with high probability  

 O(log N) routing tables 

 O(log N) lookup 

 O(log2 N) join/leave 

• Availability 

• Flexible naming 

 



Chord Protocol 
-- overview 

• Fast distributed computation of a hash function mapping 
keys to nodes. 

• Using consistent hashing 

    -- load balance 

    --minimum necessary to maintain a 
balanced load 

• Scalability: A node needs a small amount of information 



Chord Protocol 
-- Consistent Hashing 

• Each node and key has an m-bit identifier 

• Node’s identifier 

   – hashing the node’s IP address 

• Key’s identifier 

  – hashing the key 

• Key k is assigned to the successor(k) 

   – identifier of successor(k) is equal to or follows k’s 
identifier     



Chord IDs 

m  bit identifier space for both keys and nodes 

Key identifier = SHA-1(key) 

Key=“LetItBe” ID=60 SHA-1 

IP=“198.10.10.1” ID=123 SHA-1 

 Node identifier = SHA-1(IP address) 

Both are uniformly distributed 



How to map key IDs to node IDs?  

 

A key is stored at its successor: node with equal or next higher ID 

N32 

N90 

N123 K20 

K5 

Circular 7-bit 

ID space 

0 IP=“198.10.10.1” 

K101 

K60 
Key=“LetItBe” 

K32 



THEOREM 1.  

 For any set of N nodes and K keys, with high 
probability: 

 
1. Each node is responsible for at most (1+є)K/N keys (є=O(logN)) 

 

2.  When an (N+1)st node joins or leaves the network, responsibility for 
O(K/N) keys changes hands. 

 



Simple Key Location 

N32 

N90 

N123 

0 

Hash(“LetItBe”) = K60 

N10 

N55 

Where is “LetItBe”?  

“N90 has K60” 

K60 

Every node knows its successor in the ring 

requires O(N) time 



Scalable Key Location 

 How to maintain the successor information correctly? 

• N, maintains a routing table with m entries, called the 
finger table 

• ith entry is S = successor(n+2i-1) 

          -- S succeeds n by at least 2i-1 on the identifier circle 

 



Scalable Key Location  
-- finger table example 

 Finger tables and key locations for a net with nodes 0, 1, and 3 and keys 1, 2 and 6. 



Scalable Key Location 
--What happens when a node does not know the successor of a key k? 

 

• N finds a node whose ID is closer than its own to k 

• N searches its finger table for the node j, whose ID most immediately 
precedes k 

• N asks j for the node it knows whose ID is closest to k 

• Repeat this process, N learn s about nodes with ids closer and closer to k 

 

A faster algorithm uses a “finger” table on each node, somewhat similar to a skip 
list. The time complexity is down to O(log N) 



THEOREM 2.  

 With high probability, the number of nodes that must be 
contacted to find a successor in an N-node network is 
O(logN); 

 

 

 
 



Node Join Implementation 

• Three step process: 

  Initialize all fingers of new node 

  Update fingers of existing nodes 

  Transfer keys from successor to new node 



Node Join Implementation  
 

Before Node6 joining   After Node6 joining 
Changed entries are shown in black, and unchanged in gray 

 



 

• To ensure locating every key in the network, Chord needs 
to preserve two invariants: 

1. Each node’s successor is correctly maintained 

2. For every key k, node successor(k) is responsible for k 

 

• Less aggressive mechanism (lazy finger update): 

  Initialize only the finger to successor node 

  Periodically verify immediate successor, predecessor 

  Periodically refresh finger table entries 

 



Predecessor=N36 

Stabilize: 

ask N40’s 

predecessor Successor=N36 

Predecessor=N20 

Successor=N40 

Stabilization 
-- to keep nodes’ successor pointers up to date 

N60 
N40 

N5 

N20 

N99 

N80 

N36 

N36 is a newly-joint node. 

 

1. N36 notifies N40 of its 

existence 

2. N40 updates its pre. To 

N36 

3. N20 asks its successor 

N40 for N40’s predecessor 

4. N20 and N36 update 

their successor and 

predecessor 



THEOREM 3. 

 If any sequence of join operations is executed interleaved 
with stabilizations, then at some time after the last join the 
successor pointers will form a cycle on all the nodes in the 
network 



Impact of Node Joins on Lookups 

 

• Lookup behavior during joins 
 lookup fails if successor/predecessor are incorrect 

• the higher level software needs to retry 

 lookup succeeds, but it is slower if fingers are not yet updated; in 
most cases still O(log N) 

 

• THEOREM 6.  
 If we take a stable network with N nodes, and another set of up to N 

nodes joins the network with no finger pointers (but with correct 
successor pointers), then lookups will still take O(log N) time with high 
probability 

 

 



Node Leaving example 

Before Node1 Leaving    After Node1 Leaving 
Changed entries are shown in black, and unchanged in gray 

 

 

 



Handing Failures 

Failure of nodes might cause incorrect lookup 

N120 

N103 

N102 

N80 

N85 

N10 

Lookup(90) 

N80 doesn’t know correct successor, so lookup fails 

Successor List are enough for correctness 

N103 

N120 

N10 

…… 



Handling Failures 

Use successor list 

-- Each node knows r immediate successors 

-- After failure, will know first live successor 

-- Correct successors guarantee correct lookups 

 

Guarantee is with some probability 

choose r  to make probability of lookup failure arbitrarily small 

 



Voluntary Node Departures 

N36 

Predecessor=N36 

Successor list: 

N36 N40 N60 

N60 
N40 

N5 

N20 

N99 

N80 
Transfer its 

keys 

Successor list:  

N40 N60 N80 

N60 
N40 

N5 

N20 

N99 

N80 

Predecessor=N20 



• THEOREM 5. 

  If we use a successor list of length r=O(log N) in a network that is 
initially stable, and then every node fails with probability ½, then with 
high probability find-successor returns the closest living successor to 
the query key 

 

• THEOREM 6. 

 In a network that is initially stable, if every node then fails with 

probability ½, then the expected time to execute find-successor is 
O(logN). 

 

 



Simulation and Experiment Results 

• Load Balance 



Application of Virtual nodes 

 The 99th percentile decreases from 4.8x to 1.6x the mean value, while the 1st 
percentile increases from 0 to 0.5 the mean value 

 – adding virtual nodes as an indirection layer can significantly improve load 
balance 

 

 



Path Length 

 N = 2k , storing 100x 2k  keys in all.  K is varied from 3 to 14 and each node 
picked a random set of keys to query from the system. 

 The measured path length is about 1/2logN 

 



Simultaneous Node Failures 
 

 The path length and the number of timeouts experienced by a lookup as 
function of the fraction of nodes that fail simultaneously. The 1st and the 
99th percentiles are in parenthesis. Initially, the network has 1000 nodes. 

• Predicted value is a little larger than the measured value because the 
series is finite in practice 

• Timeouts match well the measure number  

• All lookups were successfully resolved – robustness 

 



Lookups During Stabilization 

Key lookups, stabilization are modeled with a certain rate. Change the joins and 
voluntary leaves rate.  

• Measured path length is very close to the predicted value 

• Measured timeouts are reasonable close to the predicted value 

• Reason for the lookup failures is state inconsistency 

 



Improving Routing Latency 

Motivation: 
 the node identifiers are randomly distributed, and therefore nodes 

close in the identifier space can be far away in the underlying network. 

 

Solution: 
• Each finger maintain a set of alternate nodes. 

• Route the queries by selecting the node among the alternate nodes 
according to some network proximity metirc 

 



Experimental Results 

• The lookup stretch of Chord system with 216 nodes and two 
network topologies are measured (3-d space and Transit stub) 

• The lookup stretch is defined as the ratio between the 

 -- latency of a Chord lookup  

 -- latency of an optimal lookup using the underlying network 

• Results show that this heuristic is quite effective, the stretch 
decreases significantly as s increases. 



Strengths 

Based on theoretical work (consistent hashing) 

 

Proven performance in many different aspects “with 
high probability” proofs 

 



Future work 

• No specific mechanism to heal partitioned rings 

 

• Find a way to check the malicious or buggy set of Chord 
participants 

-- Malicious data insertion 

-- Malicious Chord table information 

 

• logN messages per lookup many be too many for some 
applications of Chord 

 

• …… 



Weakness 

* Hashing both nodes and keys completely destroys locality 
 advantage: resistance to geographic attacks 
 disadvantage: longer network hops 

 
* Chord does not provide a degree of anonymity compared to Freenet whose 

lookups take the form of searches for cached copies.  

 
* NOT that simple (compared to CAN) 

* Member joining is complicated 

 -- requires too many messages and updates 

* Routing table grows with number of members in group 

* Worst case lookup can be slow 

* …… 

 



 

 

Thank    you ! 

Any question? 

 


