
Cloud Computing

PaaS Techniques
File System



Agenda

• Overview 

 Hadoop & Google

• PaaS Techniques

 File System
• GFS, HDFS

 Programming Model
• MapReduce, Pregel

 Storage System for Structured Data
• Bigtable, Hbase



Hadoop

• Hadoop is

 A distributed computing 
platform

 A software framework that 
lets one easily write and run 
applications that process 
vast amounts of data

 Inspired from published 
papers by Google

Hadoop Distributed
File System (HDFS)

MapReduce

Hbase

A Cluster of Machines

Cloud Applications



Google

• Google published the designs of web-search 
engine

 SOSP 2003 
• The Google File System

 OSDI 2004 
• MapReduce : Simplified Data Processing on Large Cluster

 OSDI 2006
• Bigtable: A Distributed Storage System for Structured Data



Google vs. Hadoop

Develop Group Google Apache

Sponsor Google Yahoo, Amazon

Resource open document open source

File System GFS HDFS

Programming Model MapReduce
Hadoop

MapReduce

Storage System 

(for structured data)
Bigtable Hbase

Search Engine Google Nutch

OS Linux Linux / GPL



Agenda

• Overview 

 Hadoop & Google

• PaaS Techniques

 File System
• GFS, HDFS

 Programming Model
• MapReduce, Pregel

 Storage System for Structured Data
• Bigtable, Hbase



FILE SYSTEM

File System Overview

Distributed File Systems (DFS)

Hadoop Distributed File Systems (HDFS)



File System Overview

• System that permanently stores data

• To store data in units called “files” on disks and other 
media

• Files are managed by the Operating System

• The part of the Operating System that deal with files 
is known as the “File System”

 A file is a collection of disk blocks

 File System maps file names and offsets to disk blocks

• The set of valid paths form the “namespace” of the 
file system.



What Gets Stored

• User data itself is the bulk of the file system's 
contents

• Also includes meta-data on a volume-wide and per-
file basis:

• Available space
• Formatting info.
• Character set
• …

Volume-wide

• Name
• Owner
• Modification data
• …

Per-file



Design Considerations

• Namespace
 Physical mapping

 Logical volume

• Consistency
 What to do when more than one user reads/writes on the 

same file?

• Security
 Who can do what to a file? 

 Authentication/Access Control List (ACL)

• Reliability
 Can files not be damaged at power outage or other 

hardware failures?



Local FS on Unix-like Systems(1/4)

• Namespace

 root directory “/”, followed by directories and files.

• Consistency

 “sequential consistency”, newly written data are 
immediately visible to open reads

• Security

 uid/gid, mode of files

 kerberos: tickets

• Reliability

 journaling, snapshot



Local FS on Unix-like Systems(2/4)

• Namespace

 Physical mapping
• a directory and all of its subdirectories are stored on the same 

physical media

– /mnt/cdrom

– /mnt/disk1, /mnt/disk2, … when you have multiple disks

 Logical volume
• a logical namespace that can contain multiple physical media or a 

partition of a physical media

– still mounted like /mnt/vol1

– dynamical resizing by adding/removing disks without reboot

– splitting/merging volumes as long as no data spans the split



Local FS on Unix-like Systems(3/4)

• Journaling

 Changes to the filesystem is logged in a journal before it is 
committed
• useful if an atomic action needs two or more writes

– e.g., appending to a file (update metadata + allocate space + 
write the data)

• can play back a journal to recover data quickly in case of hardware 
failure. 

 What to log?
• changes to file content: heavy overhead

• changes to metadata: fast, but data corruption may occur

 Implementations: xfs3, ReiserFS, IBM's JFS, etc.



Local FS on Unix-like Systems(4/4)

• Snapshot

 A snapshot = a copy of a set of files and directories at a 
point in time
• read-only snapshots, read-write snapshots

• usually done by the filesystem itself, sometimes by LVMs

• backing up data can be done on a read-only snapshot without 
worrying about consistency

 Copy-on-write is a simple and fast way to create snapshots
• current data is the snapshot

• a request to write to a file creates a new copy, and work from 
there afterwards

 Implementation: UFS, Sun's ZFS, etc.



FILE SYSTEM

File System Overview

Distributed File Systems (DFS)

Hadoop Distributed File Systems (HDFS)



Distributed File Systems

• Allows access to files from multiple hosts sharing via 
a computer network

• Must support concurrency
 Make varying guarantees about locking, who “wins” with 

concurrent writes, etc...

 Must gracefully handle dropped connections

• May include facilities for transparent replication and 
fault tolerance 

• Different implementations sit in different places on 
complexity/feature scale



When is DFS Useful

• Multiple users want to share files

• The data may be much larger than the storage space 
of a computer

• A user wants to access his/her data from different 
machines at different geographic locations

• Users want a storage system

 Backup

 Management

Note that a “user” of a DFS may actually be a “program”



Design Considerations of DFS(1/2)

• Different systems have different designs and 
behaviors on the following features

 Interface
• file system, block I/O, custom made

 Security
• various authentication/authorization schemes

 Reliability (fault-tolerance)
• continue to function when some hardware fail (disks, nodes, 

power, etc.)



Design Considerations of DFS(2/2)

 Namespace (virtualization)
• provide logical namespace that can span across physical 

boundaries

 Consistency
• all clients get the same data all the time

• related to locking, caching, and synchronization

 Parallel
• multiple clients can have access to multiple disks at the same time

 Scope
• local area network vs. wide area network



HOW ABOUT HADOOP
HDFS



HDFS

• Overview 

• Architecture

• Implementation

• Other Issue 



What’s HDFS

• Hadoop Distributed File 
System
 Reference from Google File 

System

 A scalable distributed file 
system for large data analysis

 Based on commodity 
hardware with high fault-
tolerance

 The primary storage used by 
Hadoop applications

Hadoop Distributed
File System (HDFS)

MapReduce

Hbase

A Cluster of Machines

Cloud Applications



HDFS’s Feature(1/2)

• Large data sets and files

 Support Petabytes size

• Heterogeneous

 Could be deployed on different hardware

• Streaming data access

 Batch processing rather than interactive user access

 Provide high aggregate data bandwidth



HDFS’s Feature(2/2)

• Fault-Tolerance

 The norm rather than exception

 Automatic recovery or report failure

• Coherency Model

 Write-once-read-many

 This assumption simplifies coherency

• Data Locality

 Move compute to data



HDFS

• Overview 

• Architecture

• Implementation

• Other Issue 



How to manage data

HDFS Architecture



Namenode

• Each HDFS cluster has one Namenode

• Manage the file system namespace

• Regulate access to files by clients

• Execute file system namespace operations

• Maintain a rackid-to-DataNode map and tries to 
place replicas across racks



Datanode

• One per node in the cluster

• Manage storage attached to the nodes that they run 
on

• Serve read and write requests from the file system’s 
clients

• Perform block creation, deletion, and replication



File System Namespace

• Traditional hierarchical file organization

• Does not support hard links or soft links

• Change to the file system namespace or its 
properties is recorded by the Namenode



HDFS

• Overview 

• Architecture

• Implementation

• Other Issue 



Data Replication

• Blocks of a file are replicated for fault tolerance

• The block size and replication factor are configurable 
per file

• Namenode makes all decisions regarding replication 
of blocks

 Heartbeat: Datanode is functioning properly

 Blockreport: a list of all blocks on a Datanode



Block Replication



Replica Placement

• Rack-aware replica placement policy

 data reliability

 availability

 network bandwidth utilization

• To validate it on production systems

 learn more about its behavior

 build a foundation to test 

 research more sophisticated policies



Screenshot

Number of Replicas:2



Why it Fault-Tolerance

• Data Corrupt
 Checked with CRC32

 Replace corrupt block with replication one

• Network Fault & Datanode Fault
 Datanode sends heartbeat to Namenode

• Namenode Fault
 FSImage – core file system mapping image

 Editlog – transaction log

 Multiple backups of FSImage and Editlog

 Manually recovery while Namenode Fault

CRC: Cyclical Redundancy Check



Coherency Model & Performance

• Coherency model of files

 Namenode handles the operation of write, read and delete.

• Large Data Set and Performance

 The default block size is 64MB

 Bigger block size will enhance read performance

 Single file stored on HDFS might be larger than single 
physical disk of Datanode

 Fully distributed blocks increase throughput of reading



About Data locality



HDFS

• Overview 

• Architecture

• Implementation

• Other Issue 



Small file problem

• Inefficiency of resource utilization

 Significantly smaller than the HDFS block size (64MB)

• File, directory and block in HDFS is represented as an 
object in the namenode’s memory, each of which 
occupies 150 bytes

• HDFS is not geared up to efficiently accessing small 
files

 Designed for streaming access of large files



Small file solution

• Hadoop Archives (HAR)

 Introduced to alleviate the problem of lots of files putting 
pressure on the namenode’s memory

 Building a layered filesystem on top of HDFS



Small file solution

• Sequence Files

 Use the filename as the key and the file contents as the 
value

https://blog.cloudera.com/blog/2009/02/the-small-files-problem/



Summary

• Scalability

 Provide scale-out storage capability of handling very large 
amounts of data

• Availability

 Provide the ability of failure tolerance such that data would not 
lose on machine or disk fail

• Manageability 

 Provide mechanism for the system to automatically monitor 
itself and manage the massive data transparently for users

• Performance

 High sustained bandwidth is more important than low latency



References

• S. GHEMAWAT, H. GOBIOFF, and S.-T. LEUNG, “The 
Google file system,” In Proc. of the 19th ACM SOSP 
(Dec. 2003)

• Hadoop.

 http://hadoop.apache.org/

• NCHC Cloud Computing Research Group.

 http://trac.nchc.org.tw/cloud

• NTU course- Cloud Computing and Mobile Platforms.

 http://ntucsiecloud98.appspot.com/course_information

http://hadoop.apache.org/
http://trac.nchc.org.tw/cloud
http://ntucsiecloud98.appspot.com/course_information

