VIRGINIA

v

PA3 Tutorial

CS 4740 Cloud Computing

Department of Computer Science,
University of Virginia, USA

e

* Video for computer program:

http://www.youtube.com/watch?v=bUB1RIpbFNs&mode=related&sear
ch=

http://www.youtube.com/watch?v=bUB1RIpbFNs&mode=related&search

Goal of this PA

« Gain hands-on experience with the MapReduce framework

« Understand the input and output of each phase
» <key, value> pair

Python mrjob -- First Job in the Tutorial in “Fundamentals”

« A “step” consists of a mapper, a
combiner (shuffle}, and a reducer. All of

Required: import class

those are optional, though you must MRIOD TrommEicH
have at least one. from mrjob.job import MRIcb
« Map input Required: Inherit

* a key and a value ?in this case, the key is I , .
ignored and a single line of text input is the ©1ass MRWordFrequencyCount(MRIab):

value Each line
Map OUtpUt def mapper(self, , line):
_ yield "chars”, len(line)
» 3 keys for each line of text

e o o f q yield "words"”, len(line.split())
Number o eharaers number otwords, 10 5.
key value “\values

 Reduce input def reducer(self, key, values):
» a key and an iterator of values yield key, sum({values)
 Why an iterator of values? Because all the Defined by yourself

values of the same key are passed to the
same reducer. if name == ' main
Reduce Output MRWordFrequencyCount. run()
« Sum the values for each key

» Total number of characters, total number of
words, total number of lines in the text

. Required

https://pythonhosted.org/mrjob/guides/quickstart.html

Running the Job

The most basic way to run your Job 1s on the command line:
% python my job.py input.txt
By default, output will be written to stdout.

If you like to save output to a file, then add “> file name”

The second job in the Tutorial in
“Fundamentals”

* Most of the time, you'll need more than one step in your job. To
define multiple steps, override steps() to return a list of
MRSteps.

def steps(self):
return |
MRStep(mapper=self.mapper_get words,
combiner=self.combiner_ count words,
reducer=self.reducer_count words}),
MRStep(reducer=self.reducer find max word)

]

https://pythonhosted.org/mrjob/guides/quickstart.html

The second job

Read this program!

Find the word with
the highest
occurrences.

from mrjob.job import MRIcb
from mrjob.step import MRStep
import re

WORD RE = re.compile(r"[‘w']+")

class MRMostUsedWord(MRIcb):

def steps(self):
return [

MRStep({mapper=self.mapper_get words,
combiner=self.combiner count words,
reducer=self.reducer count words},

MRStep(reducer=self.reducer_find_max_word)

]

def mapper_get _words({self, _, line):
yield each word in the line
for word in WORD_RE.findall(line}:
yield (word.lower(), 1)

def combiner_count_words(self, word, counts):
optimizotion: sum the words we've seen so far
yield (word, sum{counts))

def reducer count words(self, word, counts}):
send all (num_occurrences, word) pairs to the same reducer.
num_occurrences is so0 we can easily wuse Python's max() function.
yield Mone, (sum{counts), word)

discard the key; it is just None

def reducer find max word(self, , word count pairs):
each item of word _count_pairs is (count, word),
so yielding one results in key=counts, value=word
yield max{word count pairs)

if npame == "' main_ ':
MRMostUsedWord. rund }

from mrjob.job import MRIcb
from mrjob.step import MRStep
import re

WORD_RE

= re.compile{r"[w"]+")

class MRMostUsedWord(MRIcb):

def

def

def

def

steps(self):
return [

MRStep({mapper=self.mapper_get words,
combiner=self.combiner count words,
reducer=self.reducer count words},

MRStep(reducer=self.reducer_find_max_word)

]

mapper_get _words(self, _, line):

yield each word in the line

for word in WORD_RE.findall(line}:
yield (word.lower(), 1)

combiner_count_words(self, word, counts):
optimizotion: sum the words we've seen so far
yield (word, sum{counts))

reducer count words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.

num_occurrences is so0 we can easily wuse Python's max() function.

yield Mone, (sum{counts), word)

discard the key; it is just None

def

if npame == "' main_ ':

reducer find max word(self, , word count pairs):

each item of word_count_pairs is (count, word),

so yielding one results in key=counts, value=word
yield max{word count pairs)

n

MRMostUsedWord. rund }

Remove punctuation

Define multiple steps

Count each word in one line

Occurrences of each word

Output just one key “ 7, value is a tuple of
(count, word)
So that you can use the max() easily

Output the word that has the highest occurrences

* line_split = line.split(',') # sep_length, sep_width, pet_length, pet_width, classification

. classification = line_split[-1] # last element
. sep_length = line_split[0] # first element

* yield classfication, float(sep_width)

* yield key, float(sum(sep_width)) / len(sep_width)

(W W T ST [T I T O, O, O T T O N S I O S S O T T O S S
oM OIHEPRHESNERESEWE RO R OO WD

g L L g L L g L g g P 5 L 0 L i L T L L L g L L L
rPORWOIEORNOEOOO RO ERONHNO U
O D 1 D 1~ 1~ B i 1 N T s s i s

Lo R e e e e e e s e e e e e e e e e e s e e e e J e e)
P P L B e B L P P B R R R R L P B P B B P

,lris-setosa
. Iris-setosa
. Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
JIris-setosa
Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
JIris-setosa
Iris-setosa
Iris-setosa
. Iris-setosa
. Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
JIris-setosa
Iris-setosa
Iris-setosa
. Iris-setosa

- T - M-

vield key, float(sum(sep_width)) / len(sep_width)

* This equation does not work for some computers. "float division by zero”
ZeroDivisionError will be shown.

Because the value input of reducer is a generator. Generator in python can be
only used once. After sum(sep_width), the generator becomes empty,
so len(sep_width)=0.

* You can use a "for" loop to calculate the average -- "for i in sep_width".

3) if key =="Iris Setosa':

One tip for Step 4 of PA3 ...

* The output of reducer Is sorted by key.

* Use this feature to sort the occurrences of words.

Step 4

* Original order:

e What we want:

* def map_sort(self, word, count):

. count = '%04d' % int(count) #
change integer to string with 4
characters

. vield count, word

* Print out all data and just
snapshot the result needed

Run on Amazon EMR

* The steps on PA3 document are already very clear.

Important Note

« A single-threaded implementation of MapReduce will usually not be faster
than a traditional (non-MapReduce) implementation.

« MapReduce is good for multi-threaded implementations.

« S0, to get full credit, do not use the traditional implementation to finish the
PA. Please use mrjob.

