
Cloud Computing

• PaaS Techniques
• Database



Agenda

• Overview 

 Hadoop & Google

• PaaS Techniques

 File System
• GFS, HDFS

 Programming Model
• MapReduce, Pregel

 Storage System for Structured Data
• Bigtable, Hbase



STORAGE SYSTEM FOR 
STRUCTURED DATA

Database Overview
Relational Database (SQL)
Non-relational Database Introduction (NOSQL/NOREL)
Google Bigtable
Hadoop (Hbase)



Unstructured Data

• Data can be of any type

 Not necessarily follow any format or sequence

 Not follow any rules, so is not predictable

• Two Categories 

 Bitmap Objects
• Inherently non-language based, such as image, video or audio files

 Textual Objects
• Based on a written or printed language, such as Microsoft Word 

documents, e-mails or Microsoft Excel spreadsheets



Structured Data

• Data is organized in semantic chunks (entities) 

• Similar entities are grouped together (relations or classes) 

• Entities in the same group have the same descriptions 
(attributes) 

• Descriptions for all entities in a group (schema) , e.g., 
Flight(f-num, date, time, price)

 The same defined format 

 A predefined length 

 All present 

 The same order



Semi-Structured Data

• Organized in semantic entities 

• Similar entities are grouped together 

• Entities in same group may not have same attributes 

 Order of attributes not necessarily important 

 Not all attributes are required 

 Size of same attributes in a group may different 

 Type of same attributes in a group may different



Example of Semi-Structured Data

• Name: Computing Cloud

• Phone_home: 035715131

• Name: TA Cloud

• Phone_cell: 0938383838

• Email: cloudTA@gmail.com

• Name: Student Cloud

• Email: hiCloud@hotmail.com



Database, 
and Database Management System

• Database

 A system intended to organize, store, and retrieve large 
amounts of data easily

• Database management system (DBMS)

 Consists of software that operates databases

 Provides storage, access, security, backup and other 
facilities



STORAGE SYSTEM FOR 
STRUCTURED DATA

Database Overview
Relational Database (SQL)
Non-relational Database Introduction (NOSQL/NOREL)
Google Bigtable
Hadoop (Hbase)



Relational Database(1/4)

• Essentially a group of tables (entities)

 Tables are made up of columns and rows (tuples)
 Tables have constraints, and relationships defined between 

them

• Facilitated through Relational Database Management 
Systems (RDBMS)



Relational Database(2/4)

• Multiple tables being accessed in a single query are 
"joined" together

• Normalization is a data-structuring model used with 
relational databases
 Ensures data consistency
 Removes data duplication

• Almost all database systems we use today are RDBMS
 Oracle
 SQL Server
 MySQL
 DB2
 …



Relational Database(3/4)

• Advantages

 Simplicity

 Robustness

 Flexibility

 Performance

 Scalability

 Compatibility in managing generic data

• However,

 To offer all of these, relational databases have to be 
incredibly complex internally



Relational Database(4/4)

• It’s a problem in a different situation 

 Large-scale Internet application services
• Their scalability requirements can, first of all, change very quickly 

and, secondly, grow very large.

• Relational databases scale well, but usually only when that scaling 
happens on a single server node.

• This is when the complexity of relational databases starts to rub 
against their potential to scale.

 Cloud services to be viable
• A cloud platform without a scalable data store is not much of a 

platform at all



STORAGE SYSTEM FOR 
STRUCTURED DATA

Database Overview
Relational Database (SQL)
Non-relational Database Introduction (NOSQL/NoREL)
Google Bigtable
Hadoop (Hbase)



NON-RELATIONAL DATABASE 
INTRODUCTION

NOSQL Overview

Related Theorem

Distributed Database System



What is NOSQL

• Not Only SQL
 A term used to designate database management systems

 Differ from classic relational database management 
systems

 The most common interpretation of "NoSQL" is “Non-
relational“ (NoREL, not widely used)

• Some NOSQL examples
 Google Bigtable

• Open Source - Apache Hbase

 Amazon Dynamo

 Apache Cassandra

• Emphasizes the advantages of Key/Value Stores, 
Document Databases, and Graph Databases



Key/Value Database(1/4)

• No official name yet exists, so you may see it referred 
to

 Document-oriented

 Internet-facing

 Attribute-oriented

 Distributed database (this can be relational also)

 Sharded sorted arrays

 Distributed hash table

 Key/value database (datastore)



Key/Value Database(2/4)

• No Entity Joins

 Key/value databases are item-oriented

 All relevant data relating to an item are stored within that 
item

 A domain (a table) can contain vastly different items

 This model allows a single item to contain all relevant data
• Improves scalability by eliminating the need to join data from 

multiple tables

• With a relational database, such data needs to be joined to be able 
to regroup relevant attributes



Key/Value Database(3/4)

• Advantages of key/value DBs to relational DBs

 Suitability for Clouds
• Key/Value DBs are simple and thus scale much better than 

relational databases

• Provides a relatively cheap data store platform with massive 
potential to scale

 More Natural Fit with Code
• Relational data models and Application Code Object Models are 

typically built differently

• Key/value databases retain data in a structure that maps more 
directly to object classes used in the underlying application code



Key/Value Database(4/4)

• Disadvantages of key/value DBs to relational DBs

 Data integrity issues
• Data that violate integrity constraints cannot physically be entered 

into the relational DB

• In a key/value DB, the responsibility for ensuring data integrity falls 
entirely to the application

 Application-dependent
• Relational DBs modeling process creates a logical structure that 

reflects the data it is to contain, rather than reflecting the 
structure of the application

• Key/value DBs can try replacing the relational data modeling 
exercise with a class modeling exercise

 Incompatibility



NON-RELATIONAL DATABASE 
INTRODUCTION

NOSQL Overview

Related Theorem

Distributed Database System



CAP Theorem(1/2)

• When designing distributed data storage systems, it’s 
very common to invoke the CAP Theorem
 Consistency, Availability, Partition-tolerance

• Consistency
 The goal is to allow multisite transactions to have the familiar 

all-or-nothing semantics. 

• Availability
 When a failure occurs, the system should keep going, switching 

over to a replica, if required. 

• Partition-tolerance
 If there is a network failure that splits the processing nodes into 

two groups that cannot talk to each other, then the goal would 
be to allow processing to continue in both subgroups.



CAP Theorem(2/2)

• Consistency, availability, partition tolerance. Pick two.

 If you have a partition in your network, you lose either 
consistency (because you allow updates to both sides of 
the partition) or you lose availability (because you detect 
the error and shutdown the system until the error 
condition is resolved).



NON-RELATIONAL DATABASE 
INTRODUCTION

NOSQL Overview

Related Theorem

Distributed Database System



Introduction

• Distributed database system = distributed database + 
distributed DBMS
 Distributed database

• a collection of multiple inter-correlated databases distributed over 
a computer network

 Distributed DBMS
• manage a distributed database and make the distribution 

transparent to users

• Consists of
 query nodes: user interface routines

 data nodes: data storage

• Loosely coupled: connected with network, each node 
has its own storage / processor / operating system



System Architectures

• Centralized
 one host for everything, multi-processor is possible but a 

transaction gets only one processor

• Parallel
 a transaction may be processed by multiple processors

• Client-Server
 database stored on one server host for multiple clients, centrally 

managed

• Distributed
 database stored on multiple hosts, transparent to clients

• Peer to Peer
 each node is a client and a server; requires sophisticated 

protocols, still in development



Data Models

• Hierarchical Model
 Data organized in a tree namespace

• Network Model
 Like Hierarchical Model, but a data may have multiple parents

• Entity-Relationship Model
 Data are organized in entities which can have relationships 

among them

• Object-Oriented Model
 Database capability in an object-oriented language

• Semi-structured Model
 Schema is contained in data (often associated with “self-

describing” and “XML”)



Hierarchical Model, Network Model, Entity-
Relationship Model, Object-Oriented Model, Semi-
structured Model





Data distribution

• Data is physically distributed among data nodes

 Fragmentation: divide data onto data nodes

 Replication: copy data among data nodes

• Fragmentation enables placing data close to clients

 May reduce size of data involved

 May reduce transmission cost

• Replication

 Preferable when the same data is accessed from applications 
that run at multiple nodes

 May be more cost-effective to duplicate data at multiple nodes 
rather than continuously moving it between them

• Many different schemes of fragmentation and replication



Fragmentation

• Horizontal fragmentation

 split by rows based on a fragmentation predicate

• Vertical fragmentation

 split by columns based on attributes

• Also called “partition” in some literature

Last name First name Department ID

Chang Three Computer Science X12045

Lee Four Law Y34098

Chang Frank Medicine Z99441

Wang Andy Medicine S94717



Properties

• Concurrency control

 Make sure the distributed database is in a consistent state 
after a transaction

• Reliability protocols

 Make sure termination of transactions in the face of 
failures (system failure, storage failure, lost message, 
network partition, etc)

• One copy equivalence

 The same data item in all replicas must be the same



Query Optimization

• Looking for the best execution strategy for a given query

• Typically done in 4 steps

 query decomposition: translate query to relational algebra (for 
relational database) and analyze/simplify it

 data localization: decide which fragments are involved and 
generate local queries to fragments

 global optimization: finding the best execution strategy of 
queries and messages to fragments

 local optimization: optimize the query at a node for a fragment

• Sophisticated topic



STORAGE SYSTEM FOR 
STRUCTURED DATA

Database Overview
Relational Database (SQL)
Non-relational Database Introduction (NOSQL/NoREL)
Google Bigtable
Hadoop (Hbase)



Bigtable

How to manage structured data in a distributed 
storage system that is designed to scale to a very 
large size …



STORAGE SYSTEM FOR 
STRUCTURED DATA

Database Overview
Relational Database (SQL)
Non-relational Database Introduction (NOSQL/NoREL)
Google Bigtable
Hadoop Hbase



Hbase

• Overview

• Architecture

• Data Model

• Different from Bigtable



What’s Hbase

• Distributed Database 
modeled on column-oriented 
rows

• Tables of column-oriented 
rows

• Scalable data store (scales 
horizontally)

• Apache Hadoop subproject 
since 2008

Hadoop Distributed
File System (HDFS)

MapReduce

Hbase

A Cluster of Machines

Cloud Applications



Hbase

• Overview

• Architecture

• Data Model

• Different from Bigtable



Hbase Architecture



How does Hbase work?



How does Hbase work?



Roles in Hbase(1/2)

• Master
 Cluster initialization
 Assigning/unassigning regions to/from Regionservers

(unassigning is for load balance) 
 Monitor the health and load of each Regionserver
 Changes to the table schema and handling table administrative 

functions

• Regionservers
 Serving Regions assigned to Regionserver
 Handling client read and write requests
 Flushing cache to HDFS
 Keeping Hlog
 Compactions
 Region Splits



Roles in Hbase(2/2)

• Zookeeper

 Master election and recovery

 Store membership info

 Locate -ROOT- region

• HDFS

 All persistence Hbase storage is on HDFS (HFile)

 HDFS reliability and performance are key to Hbase
reliability and performance



Table & Region

• Rows stored in 
byte‐lexicographic sorted 
order

• Table dynamically split 
into “regions”

• Each region contains 
values [startKey, endKey)

• Regions hosted on a 
regionserver



META in Zookeeper



Hbase

• Overview

• Architecture

• Data Model

• Different from Bigtable



Data Model



Data Model (cont.)

• Data are stored in tables of rows and columns
 Columns are grouped into column families

• A column name has the form “<family>:<label>”

• Table consists of 1+ “column families”

• Column family is unit of performance tuning

 Rows are sorted by row key, the table's primary key

• Cells are ”versioned”
 Each row id + column – stored with timestamp

• Hbase stores multiple versions
• (table, row, <family>:<label>, timestamp) ⟶ value

 Can be useful to recover data due to bugs

 Use to detect write conflicts/collisions



Example

Conceptual View

Physical Storage View



Hbase w/ Hadoop

• Easy integration with Hadoop MapReduce(MR)

• Look from HDFS (HDFS Requirements Matrix)



Summary

• Scalability
 Provide scale-out storage capability of handling very large 

amounts of data.

• Availability
 Provide the scheme of data replication based on a reliable 

google file system to support high availability for data store.

• Manageability 
 Provide mechanism for the system to automatically monitor 

itself and manage the massive data transparently for users.

• Performance
 High sustained bandwidth is more important than low latency.



References

• Chang, F., et al. “Bigtable: A distributed storage system for 
structured data.” In OSDI (2006).

• Hbase. 
 http://hbase.apache.org/

• NCHC Cloud Computing Research Group.
 http://trac.nchc.org.tw/cloud

• NTU course- Cloud Computing and Mobile Platforms.
 http://ntucsiecloud98.appspot.com/course_information

• Wiki.
 http://en.wikipedia.org/wiki/Database#Database_management_sy

stems

http://hbase.apache.org/
http://trac.nchc.org.tw/cloud
http://ntucsiecloud98.appspot.com/course_information
http://en.wikipedia.org/wiki/Database#Database_management_systems


• How HBase Works

• https://www.youtube.com/watch?v=lSrNUyMR_Ek

• What is Hbase in Hadoop

• https://www.youtube.com/watch?v=VEmy3I5eq74

• What is HBase? How is it different from Hadoop? | 
HDFS and HBase Architecture

• https://www.youtube.com/watch?v=hs8QnQvwyCM

https://www.youtube.com/watch?v=lSrNUyMR_Ek
https://www.youtube.com/watch?v=VEmy3I5eq74
https://www.youtube.com/watch?v=hs8QnQvwyCM

