

Introduction to MapReduce

Outline

 We will cover:

 Basics

 Data Flow in MapReduce

 Scheduling in MapReduce

 Next Generation MapReduce

10/16/2018 2

Big Data

 Big data includes data sets with sizes beyond the ability

of commonly used software to process within a tolerable

elapsed time.

10/16/2018 3

Big Data

4 10/16/2018 4

Why BigData?

10/16/2018 5

100 terabytes of data
uploaded daily to

Facebook
2.7 Zetabytes of data exist in

the digital universe today

Walmart handles more than 1
million customer transactions

every hour, more than 2.5
petabytes of data

YouTube users upload 48 hours of
new video every minute of the day

Why Big Data??

 MapReduce is a programming model for data processing

 The power of MapReduce lies in its ability to scale to 100

10/16/2018 6

Motivation

• Process lots of data

• Google processed about 24 petabytes of data per day in 2009

• A single machine cannot serve all the data

• You need a distributed system to store and process in parallel

• Parallel programming?

• Threading is hard!

• How do you facilitate communication between nodes?

• How do you scale to more machines?

• How do you handle machine failures?

7

MapReduce

 MapReduce is a programming model for data processing

 The power of MapReduce lies in its ability to scale to 100s or 1000s

of computers, each with several processor cores

 MapReduce divides the workload into multiple independent tasks

and schedule them across cluster nodes

 A work performed by each task is done in isolation from one another

10/16/2018 8

Key Features

• MapReduce provides

 Automatic parallelization, distribution

 I/O scheduling

• Load balancing

• Network and data transfer optimization

 Fault tolerance

• Handling machine failures

• Need more power: Scale out, not up!

• A large number of commodity servers as opposed to some high
end specialized servers

9

Network Topology in MapReduce

 MapReduce assumes a tree style network topology

 Nodes are spread over different racks embraced in one or many data centers

 A salient point is that the bandwidth between two nodes is dependent on their

relative locations in the network topology

 For example, nodes that are on the same rack will have higher bandwidth

between them as opposed to nodes that are off-rack

10/16/2018 10

Top of rack
switch

Aggregation
switch

Core switch

Typical Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf

10/16/2018 11

MapReduce Application Example:
WordCount

12

MapReduce: A Bird’s-Eye View

 In MapReduce, chunks are processed in

isolation by tasks called Mappers

 The outputs from the mappers are denoted as

intermediate outputs (IOs) and are brought

into a second set of tasks called Reducers

 The process of bringing together IOs into a set

of Reducers is known as shuffling process

 The Reducers produce the final outputs (FOs)

 Overall, MapReduce breaks the data flow into two phases,

map phase and reduce phase

C0 C1 C2 C3

M0 M1 M2 M3

IO0 IO1 IO2 IO3

R0 R1

FO0 FO1

chunks

mappers

Reducers

M
a

p
 P

h
a

s
e

R

e
d

u
c

e
 P

h
a

s
e

Shuffling Data

10/16/2018 13

MapReduce Workflow

14

Worker

Worker

Worker

Worker

Worker

read

local

write

remote

read,
sort

Output
File 0

Output
File 1

write

Split 0

Split 1

Split 2

Input Data Output Data

Map
extract something you
care about from each

record

Reduce
aggregate,

summarize, filter,
or transform

Keys and Values

 The programmer in MapReduce has to specify two functions, the

map function and the reduce function that implement the Mapper

and the Reducer in a MapReduce program

 In MapReduce, data elements are always structured as

key-value (i.e., (K, V)) pairs

 The map and reduce functions receive and emit (K, V) pairs

(K, V)

Pairs

Map

Function
(K’, V’)

Pairs

Reduce

Function
(K’’, V’’)

Pairs

Input Splits Intermediate Outputs Final Outputs

10/16/2018 15

Partitions

 In MapReduce, intermediate output values are not usually

reduced together

 All values with the same key are presented to a single

Reducer together

 More specifically, a different subset of intermediate key space is

assigned to each Reducer

 These subsets are known as partitions

Different colors represent

different keys (potentially)

from different Mappers

Partitions are the input to Reducers

10/16/2018 16

Hadoop

 Since its debut on the computing stage, MapReduce has frequently

been associated with Hadoop

 Hadoop is an open source implementation of MapReduce and is

currently enjoying wide popularity

 Hadoop presents MapReduce as an analytics engine and under the

hood uses a distributed storage layer referred to as Hadoop

Distributed File System (HDFS)

 HDFS mimics Google File System (GFS)

10/16/2018 17

Hadoop Components

• Distributed file system (HDFS)
 Single namespace for entire cluster

 Replicates data 3x for fault-tolerance

• MapReduce framework
 Executes user jobs specified as “map” and “reduce” functions

 Manages work distribution & fault-tolerance

10/16/2018 18

Data Distribution

 In a MapReduce cluster, data is distributed to all the nodes of the

cluster as it is being loaded in

 An underlying distributed file systems (e.g., GFS) splits large data

files into chunks which are managed by different nodes in the cluster

 Even though the file chunks are distributed across several

machines, they form a single namesapce

Input data: A large file

Node 1

Chunk of input data

Node 2

Chunk of input data

Node 3

Chunk of input data

10/16/2018 19

Typical Hadoop Cluster

Aggregation switch

Rack switch

• 40 nodes/rack, 1000-4000 nodes in cluster

• 1 Gbps bandwidth within rack, 8 Gbps out of rack

• Node specs (Yahoo terasort):
8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB)

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf

10/16/2018 20

Hadoop MapReduce: A Closer Look

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local

HDFS store

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local

HDFS store

Node 1 Node 2

Shuffling

Process

Intermediate

(K,V) pairs

exchanged by

all nodes

21

Task Scheduling in MapReduce

 MapReduce adopts a master-slave architecture

 The master node in MapReduce is referred

to as Job Tracker (JT)

 Each slave node in MapReduce is referred

to as Task Tracker (TT)

 MapReduce adopts a pull scheduling strategy rather than

a push one

 I.e., JT does not push map and reduce tasks to TTs but rather TTs pull

them by making pertaining requests

JT

T0 T1 T2

Tasks Queue

TT

 Task Slots

TT

 Task Slots

T0

T1

10/16/2018 22

Map and Reduce Task Scheduling

 Every TT sends a heartbeat message periodically to JT

encompassing a request for a map or a reduce task to run

I. Map Task Scheduling:

 JT satisfies requests for map tasks via attempting to schedule mappers

in the vicinity of their input splits (i.e., it considers locality)

II. Reduce Task Scheduling:

 However, JT simply assigns the next yet-to-run reduce task to a

requesting TT regardless of TT’s network location and its implied effect

on the reducer’s shuffle time (i.e., it does not consider locality)

10/16/2018 23

Job Scheduling in MapReduce

 In MapReduce, an application is represented as a job

 A job encompasses multiple map and reduce tasks

 MapReduce in Hadoop comes with a choice of schedulers:

 The default is the FIFO scheduler which schedules jobs

in order of submission

 There is also a multi-user scheduler called the Fair scheduler which

aims to give every user a fair share of the cluster

capacity over time

10/16/2018 24

Fault Tolerance in MapReduce

1. If a task crashes:

 Retry on another node

• OK for a map because it has no dependencies

• OK for reduce because map outputs are on disk

 If the same task fails repeatedly, fail the job or ignore that input
block (user-controlled)

 Note: For these fault tolerance features to work, your map
and reduce tasks must be side-effect-free

10/16/2018 25

Fault Tolerance in MapReduce

2. If a node crashes:

 Re-launch its current tasks on other nodes

 Re-run any maps the node previously ran

• Necessary because their output files were lost along with the
crashed node

10/16/2018 26

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

 Launch second copy of task on another node (“speculative
execution”)

 Take the output of whichever copy finishes first, and kill the other

 Surprisingly important in large clusters

 Stragglers occur frequently due to failing hardware, software bugs,
misconfiguration, etc

 Single straggler may noticeably slow down a job

10/16/2018 27

Hadoop 2: Big data's big leap forward

• The new Hadoop is the Apache Foundation's attempt to create a whole
new general framework for the way big data can be stored, mined, and
processed.

• The biggest constraint on scale has been Hadoop’s job handling. All
jobs in Hadoop are run as batch processes through a single daemon
called JobTracker, which creates a scalability and processing-speed
bottleneck.

• Hadoop 2 uses an entirely new job-processing framework built using
two daemons: ResourceManager, which governs all jobs in the
system, and NodeManager, which runs on each Hadoop node and
keeps the ResourceManager informed about what's happening on that
node.

28 10/16/2018

Hadoop 2.0 – YARN

(Yet Another Resource Negotiator)

29 10/16/2018

Comparison of Two Generations of
Hadoop

30 10/16/2018

Apache Spark

• An open-source cluster computing framework originally developed in
the AMPLab at UC Berkeley (Dr. Matei Zaharia). In contrast to Hadoop's
two-stage disk-based MapReduce paradigm, Spark's in-memory
primitives provide performance up to 100 times faster for certain
applications.

• Spark requires a cluster manager and a distributed storage system. For
cluster manager, Spark supports standalone (native Spark
cluster), Hadoop YARN, or Apache Mesos. For distributed storage,
Spark can interface with a wide variety, including HDFS, Cassandra,
Openstack Swift, and Amazon S3.

• In February 2014, Spark became an Apache Top-Level Project. Spark
has over 1000 contributors in 2016.

10/16/2018 31

https://en.wikipedia.org/wiki/Matei_Zaharia
https://en.wikipedia.org/wiki/Matei_Zaharia
https://en.wikipedia.org/wiki/Matei_Zaharia

Apache Spark

10/16/2018 32

Summary

• MapReduce

 Programming paradigm for data-intensive computing

 Distributed & parallel execution model

 Simple to program

• The framework automates many tedious tasks (machine selection,
failure handling, etc.)

33

• Microsoft Datacenter Tour (short version)

https://www.youtube.com/watch?v=zX

soygN_v7A

https://www.youtube.com/watch?v=4e97g7

_qSxA

• The world's largest data center

 Thank You!

10/16/2018 35

